A finite element analysis for calculating three-dimensional(3-D) solder joint shape between chip component and substrate pad was carried out, and the effects of solder volume and pad extension beyond the edge of compo...A finite element analysis for calculating three-dimensional(3-D) solder joint shape between chip component and substrate pad was carried out, and the effects of solder volume and pad extension beyond the edge of component on solder joint shapes were investigated. The resonable design ranges of solder volume and pad extension have been put forward.展开更多
Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of...Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.展开更多
建立叠层封装(packaging on packaging,POP)堆叠焊点有限元模型,基于ANAND本构方程,分析了热循环载荷下焊点应力分布状态及热疲劳寿命;基于灵敏度法分析了POP封装结构参数对焊点热应力的影响显著性;基于响应面法建立POP堆叠焊点热应力...建立叠层封装(packaging on packaging,POP)堆叠焊点有限元模型,基于ANAND本构方程,分析了热循环载荷下焊点应力分布状态及热疲劳寿命;基于灵敏度法分析了POP封装结构参数对焊点热应力的影响显著性;基于响应面法建立POP堆叠焊点热应力与结构参数的回归方程,并结合粒子群算法对结构参数进行了优化.结果表明,焊点与铜焊盘接触处应力最大,该处会率先产生裂纹,上层焊点高度和下层焊点高度对POP堆叠焊点热应力影响较为显著;最优结构参数水平组合为上层焊点高度0.35 mm、下层焊点高度0.28 mm、中层印刷电路板厚度0.26 mm,优化后上、下两层焊点的最大热应力分别下降了0.816和1.271 MPa,延长了POP堆叠焊点热疲劳寿命.展开更多
文摘A finite element analysis for calculating three-dimensional(3-D) solder joint shape between chip component and substrate pad was carried out, and the effects of solder volume and pad extension beyond the edge of component on solder joint shapes were investigated. The resonable design ranges of solder volume and pad extension have been put forward.
文摘Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.