期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
The Impact of Temperature on the Electromagnet and Structural Optimization of a Solenoid Valve
1
作者 Zhixiong Tang Zhijun Feng 《Journal of Electronic Research and Application》 2024年第1期28-35,共8页
The mathematical model of the solenoid valve under varying temperatures is constructed to investigate its performance and enhance heat dissipation balance.The relationship between temperature and electromagnetic force... The mathematical model of the solenoid valve under varying temperatures is constructed to investigate its performance and enhance heat dissipation balance.The relationship between temperature and electromagnetic force is determined.Electrothermal coupling simulation using COMSOL is conducted,optimizing the outer diameter and length structure parameters of the coil.It is established that the heat dissipation of the coil is influenced by its outer diameter.Subsequently,based on optimized coil structure parameters,an orthogonal experimental design method combined with Ansys Maxwell is employed for simulation solution analysis to study the impact of structural parameters such as length,position,front and rear angles of the magnetic barrier ring in the iron core,armature length,and through-hole size on electromagnetic force.Optimal structural parameters are identified.Results indicate a decrease in steady-state electromagnet temperature by 3-4℃,an increase in the initial electromagnetic force by 32.63%,and a rise in the maximum electromagnetic force by 27.10%. 展开更多
关键词 solenoid valve ELECTROMAGNET TEMPERATURE Electromagnetic force
下载PDF
Dynamic Performance of High Speed Solenoid Valve with Parallel Coils 被引量:15
2
作者 KONG Xiaowu LI Shizhen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期816-821,共6页
The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts.... The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve. 展开更多
关键词 high speed solenoid valve parallel coils dynamic performance delay time
下载PDF
Development of a Novel Parallel-spool Pilot Operated High-pressure Solenoid Valve with High Flow Rate and High Speed 被引量:6
3
作者 DONG Dai LI Xiaoning 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期369-378,共10页
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a... High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate. 展开更多
关键词 high-pressure pneumatic solenoid valve parallel-spool high flow rate high speed opening response time
下载PDF
Influence of eddy current on transient characteristics of common rail injector solenoid valve 被引量:1
4
作者 李丕茂 张幽彤 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期26-34,共9页
Influence of eddy current on transient characteristics of common rail injector solenoid valve was studied in this paper. Experimental investigations of drive current and power source volt- age of both drive current as... Influence of eddy current on transient characteristics of common rail injector solenoid valve was studied in this paper. Experimental investigations of drive current and power source volt- age of both drive current ascending and descending process were conducted on a common rail injec- tor solenoid valve. A new discretizing calculation method of solenoid valve flux linkage was put for- ward for the first time based on the experimental results and drive circuit principle, and flux linkage of both drive current ascending and descending process were evaluated. New inductance calculation methods for drive current ascending and descending process respectively were also presented. Influ- ence of parasitic inductance was evaluated. Results indicate that the air gap, under which the transi- ent flux linkage of the solenoid valve is the biggest, varies with drive current due to eddy current. Flux linkage of drive current descending process is bigger than that of drive current ascending process under the same drive current and the same air gap width. Eddy current can reduce the delay between the time that drive current begins to descend and the time that armature begins to move downward. Inductance of drive current descending process is bigger than that of drive current as- cending process over larger scope of drive current, but the difference becomes smaller with the in- creasing of air gap width. The differences of both flux linkage and inductance between drive current ascending and descending process are caused by the eddy current in core and armature materials. 展开更多
关键词 common rail injector solenoid valve transient characteristic flux linkage INDUCTANCE eddy current
下载PDF
INVESTIGATION ON THE DYNAMIC RESPONSE PERFORMANCE OF A NOVEL THREE-WAY SOLENOID VALVE
5
作者 李维 苏岭 +2 位作者 汪映 周龙保 柳泉冰 《Journal of Pharmaceutical Analysis》 SCIE CAS 2006年第1期13-16,20,共5页
Objective A novel high-speed three-way solenoid valve is developed, which is used for the common-rail injection system equipped on DME powered engine. In order to improve the dynamic response performance of the three-... Objective A novel high-speed three-way solenoid valve is developed, which is used for the common-rail injection system equipped on DME powered engine. In order to improve the dynamic response performance of the three-way solenoid. Methods Experimental studies have been conducted to investigate the effects of spool stroke, drive voltage, negative demagnetizing pulse and two drive schemes on the dynamic response performance of the three-way solenoid valve. Results The results show that the dynamic response performance of the three-way solenoid valve can be remarkably improved by shortening the spool stroke and increasing the drive voltage. Simultaneously, the difference between the response time of closing valve and that of opening valve decreases. At each different drive voltage, there exists an optimal negative demagnetizing pulse corresponding to the same positive exciting pulse. At this optimal pulse, the dynamic response performance of the three-way solenoid valve is the best. In addition, the high drive voltage can lead to the smaller optimal negative demagnetizing pulse. It is also indicated from the experiments that the dynamic response performance of the three-way solenoid valve is better when the NO.1 drive scheme is adopted. The lower drive voltage results in the larger difference between the dynamic response performances for the two drive schemes. Conclusion The dynamic response performance of a novel three-way solenoid valve is good. 展开更多
关键词 three-way solenoid valve dynamic response performance common-rail
下载PDF
Simulation research on dynamic performance of the new type high-pressure solenoid valve
6
作者 Qihui YU Qiancheng WANG +1 位作者 Kaifei ZHANG Weiwei ZHENG 《Mechanical Engineering Science》 2020年第2期43-48,I0005,共7页
To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to... To improve energy density,the transportation,storage,and operations of hydrogen,methane,and compressed air vehicles currently require high-pressure compression.High-pressure solenoid valve becomes the vital element to above system.In order to reduce leakage and aerodynamic force influence,a new type high-pressure solenoid valve was proposed.The simulation model which included electromagnetic model,aerodynamic force model was established by means of the nonlinear mathematic models.Using the software MATLAB/Simulink for simulation,the dynamic response characteristics of high-pressure pneumatic solenoid valve were obtained under different pulse width modulation(PWM)input control signals.Results show that,first of all,the new type of high-pressure solenoid valve can meet the switch requirement.Secondly,the opening movement and closing movement of the spool lags the PWM rising signal,and the coil current fluctuates significantly during the movement of the spool.Lastly,on/off status of high-pressure valve cannot be represented by the duty cycle.This research can be referred in the design of the high-pressure solenoid valve.. 展开更多
关键词 high-pressure solenoid valve dynamic response performance pulse width modulation the duty cycle
下载PDF
Real Time Automation and Ratio Control Using PLC&SCADA in Industry 4.0
7
作者 Basant Tomar Narendra Kumar Mini Sreejeth 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1495-1516,共22页
Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-tim... Industrial Control Systems(ICS)and SCADA(Supervisory Control and Data Acquisition)systems play a critical role in the management and regulation of critical infrastructure.SCADA systems brings us closer to the real-time application world.All process and equipment control capability is typically provided by a Distributed Control System(DCS)in industries such as power stations,agricultural systems,chemical and water treatment plants.Instead of control through DCS,this paper proposes a SCADA and PLC(Programmable Logic Controller)system to control the ratio control division and the assembly line division inside the chemical plant.A specific design and implementation method for development of SCADA/PLC based real time ratio control and automated assembly line system in a chemical plant is introduced.The assembly line division is further divided into sorting stage,filling stage and the auxiliary stage,which includes the capping unit,labelling unit and then the storage.In the ratio control division,we have defined the levels inside the mixer and ratio of the raw materials through human machine interface(HMI)panel.The ratio of raw materials is kept constant on the basis of flow rates of wild stream and manipulated stream.There is a flexibility in defining new levels and the ratios of the raw materials inside the mixer.But here we taken the predefined levels(low,medium,high)and ratios(3:4,2:1,2:5).Control valves are used for regulating the flow of the compositions.In the assembly line division,the containers are sorted on the basis of size and type of material used i.e.,big sized metallic containers and small sized non-metallic containers by inductive and capacitive proximity sensors.All the processes are facilitated with laser beam type or reflective type sensors on the conveyor system.Building a highly stable and dependable PLC/SCADA system instead of Distributed Control System is required to achieve automatic management and control of chemical industry processes to reduce waste manpower and physical resources,as well as to improve worker safety. 展开更多
关键词 Industry 4.0 ratio control AUTOMATION PLC SCADA control valves proximity sensors conveyor system solenoid valves
下载PDF
高速开关阀在起落架半主动控制中的应用研究(英文) 被引量:6
8
作者 刘晖 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第3期232-240,共9页
To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active... To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear. Performance of the actuator may directly affect the effectiveness of semi-active control. In this article, parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied. A nonlinear high-speed solenoid valve model is developed with the consideration of magnetic saturation characteristics and verified by test. According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy, a fuzzy PD control rule is designed. By the rule controller parameters can be self-regulated. The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing. 展开更多
关键词 landing gear shock absorber semi-active control high-speed solenoid valve
下载PDF
Design and Development of Innovative Highland Water Filtration System
9
作者 Mohd Hudzari Razali Syazili Roslan +2 位作者 Abdus Ssomad M. Abd Halim Ahmad Farizal Md. Shokeri Nur Azuan Husin 《World Journal of Engineering and Technology》 2016年第3期383-390,共8页
The righteous book of Al-Quran mentions that the basic need of the living thing in this world is water. Resident of rural areas such as indigenous people will tap the highland aquatic resources as the main foundation ... The righteous book of Al-Quran mentions that the basic need of the living thing in this world is water. Resident of rural areas such as indigenous people will tap the highland aquatic resources as the main foundation for water. The reservoir is built on the top of hilly area to collect water before it discharges through a pipe system that uses the force of gravity to go down to the settlements. However, the filtration system frequently clogs and requires the occupants to climb up the reservoir hill for cleaning process. A lot of energy and time are required to manage the irrigation systems. Thus, an innovation system has been conducted as the filters will be cleaned automatically using solar energy supply. The designs of the filters are specially designed as the filter is equipped with electric motors, washer rods, power supply units, and automatic control box. The advantages of this project are the product will filtered the water as remain as natural highland watering resources while using the solar energy to accomplished green technology application. 展开更多
关键词 Water Filtration Clogging and Foreign Material solenoid Valve Relay Automation Solar Energy
下载PDF
The Characteristic Analysis of the Electromagnetic Valve in Opening and Closing Process for the Gas Injection System
10
作者 Linqian Yin Changshui Wu 《Journal of Electromagnetic Analysis and Applications》 2016年第8期152-159,共9页
In this paper, the mathematical model of solenoid valve in the fuel injection system of gas engine is built. Simulation software Matlab/Simulink are employed to analyze the impact which the voltage, number of the coil... In this paper, the mathematical model of solenoid valve in the fuel injection system of gas engine is built. Simulation software Matlab/Simulink are employed to analyze the impact which the voltage, number of the coil turns and air gap width may produce to the open and close characteristics of the solenoid valve. The ideal response characteristics are got through the calculation. An optimal scheme which satisfies the operation requirements is put forward. The driving voltage and maintaining voltage are set as 90 V and 21 V;number of the coil turns is 30 N;air gap is determined as 0.6 mm;the opening and closing time are respectively 0.98 ms and 0.8 ms. This paper can be used as a reference for the design of the solenoid valve. 展开更多
关键词 solenoid Valve Response Characteristics MATLAB/SIMULINK Fuel Injection System
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部