The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their ch...The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.展开更多
The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called P...The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called Pneumo transport, whereas transporting material with water or any other liquid through pipeline is called as hydraulic transport. A large number of installations are now available globally to transport solid materials to short, medium, and long distances using water/air as carrier fluid. However, the design of such system of pipeline is still an empirical art. In the present investigation, one generalized mathematical model developed by Shrivastava and Kar (SK Model) and CFD models were used and compared with experimental results for pneumatic and hydraulic transport of granular solids. The motivation of present work is to find the accuracy of SK model based on analytical, empirical and semi-empirical for the prediction of pressure drop and comparing the result with CFD based on mathematical equation for the mixture flow in the horizontal and vertical pipe lines. The comparison of pressure drop results obtained by using SK model and CFD model were validated with the experimental results for pneumatic and hydraulic transport of solids through. From the comparison results, it was observed that the results of pressure drop predicted by SK model are more accurate than the CFD models for all the cases considered.展开更多
文摘The filling of rivers generated by carried solid deposit is a factor for the raising of height of rivers and thus activates the floods and inundations. The quantification of carried solid flow charges through their characterization and the analysis of hydrosedimentary dynamics is the second step of the investigation of the solid flow transport in the Mono river. This study aims to quantify the volume of trapped sediments in function of the variation of the geometry of the shape of sections of the river depending of the slope and the flow rate therefore to evaluate the capacity of transport of eroded solid flows of a watercourse from upstream to downstream. Consequently, the decreasing percentage of deposited alluvium from upstream to downstream is calculated along Mono river. Thus the drawn granulometric curve of sediments and the determinate granulometric characteristics of sediments permit to quantify the carried sediment charges at each chosen section with Engelund-Hansen model in Mono river.
文摘The carrier fluid (air or water) is used to transport solid material from the source place to its destination point through pipeline. Using air as carrier fluid to transport solid material through pipeline is called Pneumo transport, whereas transporting material with water or any other liquid through pipeline is called as hydraulic transport. A large number of installations are now available globally to transport solid materials to short, medium, and long distances using water/air as carrier fluid. However, the design of such system of pipeline is still an empirical art. In the present investigation, one generalized mathematical model developed by Shrivastava and Kar (SK Model) and CFD models were used and compared with experimental results for pneumatic and hydraulic transport of granular solids. The motivation of present work is to find the accuracy of SK model based on analytical, empirical and semi-empirical for the prediction of pressure drop and comparing the result with CFD based on mathematical equation for the mixture flow in the horizontal and vertical pipe lines. The comparison of pressure drop results obtained by using SK model and CFD model were validated with the experimental results for pneumatic and hydraulic transport of solids through. From the comparison results, it was observed that the results of pressure drop predicted by SK model are more accurate than the CFD models for all the cases considered.