Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A...Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A more feasible method is proposed to determine the acceleration length from the measured axial profiles of pressure gradient (or apparent solid holdup). With this new method and large amount of experimental data, a clear picture on the variation of the acceleration length with both solid circulating rate and superficial gas velocity is obtained.It is found that the acceleration length increases generally with increasing solid flow rate and/or decreasing gas velocity. However, the trend in variation of the acceleration length with operating conditions are quite different in different operation ranges. Reasonable explanations are suggested for the observed variation patterns of acceleration length.展开更多
In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is ...In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is developed to estimate the particle velocity at the constant velocity section. Experimental investigations are made to validate the downer model. The model simulations have a good agreement with experimental data. Moreover, a formula is derived to predict the first acceleration section length and the whole acceleration section length.展开更多
This work aims to investigate the application of ultrasound Doppler velocimetry in multiphase flow.The experimental results show that in the homogeneous liquid-solid system,the amplitude of the received echo energy de...This work aims to investigate the application of ultrasound Doppler velocimetry in multiphase flow.The experimental results show that in the homogeneous liquid-solid system,the amplitude of the received echo energy decreases exponentially with measurement depth,and attenuation rate increases with increase of solid holdup monotonously.A model based on the ultrasound reflection and refraction law and scatter characteristics of particles is proposed to predict the relationship between received echo energy and solid holdup.In the gas-liquid system,liquid velocity and bubble rise velocity can be directly obtained from the velocity profile by Dop 2000 when the bubble number is small,while in medium gas velocity range,FFT must be executed to calculate velocity distribution, resulting in a two-peak distribution,which in turn can be used to obtain liquid velocity and bubble velocity by further data processing.展开更多
基金the National Natural Science foundation of China (No. 29928005).
文摘Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A more feasible method is proposed to determine the acceleration length from the measured axial profiles of pressure gradient (or apparent solid holdup). With this new method and large amount of experimental data, a clear picture on the variation of the acceleration length with both solid circulating rate and superficial gas velocity is obtained.It is found that the acceleration length increases generally with increasing solid flow rate and/or decreasing gas velocity. However, the trend in variation of the acceleration length with operating conditions are quite different in different operation ranges. Reasonable explanations are suggested for the observed variation patterns of acceleration length.
基金the National Program of Basic Research (No. G1999022103) the National Natural Science Foundation of China (No. 29936090).
文摘In this work, a mathematical model is established to describe the axial variation of the characteristic flow parameters (particle velocity, solid holdup and pressure gradient) in a downer. An empirical correlation is developed to estimate the particle velocity at the constant velocity section. Experimental investigations are made to validate the downer model. The model simulations have a good agreement with experimental data. Moreover, a formula is derived to predict the first acceleration section length and the whole acceleration section length.
文摘This work aims to investigate the application of ultrasound Doppler velocimetry in multiphase flow.The experimental results show that in the homogeneous liquid-solid system,the amplitude of the received echo energy decreases exponentially with measurement depth,and attenuation rate increases with increase of solid holdup monotonously.A model based on the ultrasound reflection and refraction law and scatter characteristics of particles is proposed to predict the relationship between received echo energy and solid holdup.In the gas-liquid system,liquid velocity and bubble rise velocity can be directly obtained from the velocity profile by Dop 2000 when the bubble number is small,while in medium gas velocity range,FFT must be executed to calculate velocity distribution, resulting in a two-peak distribution,which in turn can be used to obtain liquid velocity and bubble velocity by further data processing.