A ternary Ni2FeSb shape memory alloy was fabricated by powder metallurgy route. Sintering kinetics was estimated from dilatometry tests; whereas the microstructure and morphology of the powder and consolidated bulk sa...A ternary Ni2FeSb shape memory alloy was fabricated by powder metallurgy route. Sintering kinetics was estimated from dilatometry tests; whereas the microstructure and morphology of the powder and consolidated bulk samples were evaluated by XRD and SEM, respectively. Microhardness tests were performed on the surface of sintered samples. The results indicated that milling time has an effect on the shape and particle size as well as the homogeneity of the crystalline structures of the powders. Samples with longer milling time presented higher relative densities, better distribution of the elements on the alloy as well as the L21 and martensite phases, which will give the shape memory effect. The estimated activation energy values ranged from 109 to 282 kJ/mol at temperatures between 750 and 1273 K, indicating that sintering is controlled mainly by volume diffusion. Microhardness was improved by increasing the milling time and the heating rate.展开更多
PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.I...PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.In this work,PbMo_(6)S_(8) bulks were prepared through a solid‐state sintering process using PbS,Mo,and MoS_(2) as raw materials.The phase evolution mechanism during the sintering of PbMo_(6)S_(8) was studied in detail.It was found that during sintering at 750℃ for 24 h,both the S and Pb atoms diffuse into the Mo and MoS_(2) particles,leading to the formation of the PbMo_(6)S_(8) phase.After sintering at 950℃ for 72 h,a high superconducting phase content was obtained in the bulk;however,numerous pores remained.Therefore,in order to obtain a higher density for the bulk,a two‐step sintering process was developed.Based on this technique,PbMo_(6)S_(8) bulks with a higher bulk density and a higher superconducting phase content were obtained.This study provides an effective method for the fabrication of high‐quality precursor powders,which can be the foundation for the future fabrication of PbMo_(6)S_(8) superconducting long wires or tapes for practical applications.展开更多
基金PROMEP/103.5/13/6992 and the CIC of the UMSNH for the financial supportCONACYT under the project CB-2011-167111
文摘A ternary Ni2FeSb shape memory alloy was fabricated by powder metallurgy route. Sintering kinetics was estimated from dilatometry tests; whereas the microstructure and morphology of the powder and consolidated bulk samples were evaluated by XRD and SEM, respectively. Microhardness tests were performed on the surface of sintered samples. The results indicated that milling time has an effect on the shape and particle size as well as the homogeneity of the crystalline structures of the powders. Samples with longer milling time presented higher relative densities, better distribution of the elements on the alloy as well as the L21 and martensite phases, which will give the shape memory effect. The estimated activation energy values ranged from 109 to 282 kJ/mol at temperatures between 750 and 1273 K, indicating that sintering is controlled mainly by volume diffusion. Microhardness was improved by increasing the milling time and the heating rate.
基金supported Northwest Institute of Non‐ferrous Metal Research Funding(No.YK2117).
文摘PbMo6S 8 superconducting materials are considered to have great potential for practical applications at low temperatures and high fields due to their high upper critical field,low anisotropy,and low preparation cost.In this work,PbMo_(6)S_(8) bulks were prepared through a solid‐state sintering process using PbS,Mo,and MoS_(2) as raw materials.The phase evolution mechanism during the sintering of PbMo_(6)S_(8) was studied in detail.It was found that during sintering at 750℃ for 24 h,both the S and Pb atoms diffuse into the Mo and MoS_(2) particles,leading to the formation of the PbMo_(6)S_(8) phase.After sintering at 950℃ for 72 h,a high superconducting phase content was obtained in the bulk;however,numerous pores remained.Therefore,in order to obtain a higher density for the bulk,a two‐step sintering process was developed.Based on this technique,PbMo_(6)S_(8) bulks with a higher bulk density and a higher superconducting phase content were obtained.This study provides an effective method for the fabrication of high‐quality precursor powders,which can be the foundation for the future fabrication of PbMo_(6)S_(8) superconducting long wires or tapes for practical applications.