期刊文献+
共找到111,134篇文章
< 1 2 250 >
每页显示 20 50 100
A Study on Solid/Melt Interfaces and the Formation of<100> Texture in Solidified FCC Metals 被引量:20
1
作者 D.Y.Li(Dept. of Mater. Sci & Eng., The Pennsylvania State University, University Park, PA 16802, USA )B.Debray and J.A.Szpunar(Dept. of Metall. Eng., McGill University, 3450 Uuiversity Street, Molitreal, PQ, Canada H3A 2A7) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1997年第6期457-461,共5页
The (100) texture of solidified fcc metals, caused by the preferential (100) dendrite growth, could be closeIy related to solid/melt interfaces which behave differently along different crystallographic orientation. Th... The (100) texture of solidified fcc metals, caused by the preferential (100) dendrite growth, could be closeIy related to solid/melt interfaces which behave differently along different crystallographic orientation. The stability and roughness of {111} and {100} solid/melt interfaces of fcc metals were investigated using a modified Temkin multi-layer model. It is demonstrated that {100}crystal/melt interface is more unstable and rougher than {111} interface. The effect of the stability of crystal/melt interface on the (100) texture formation in solidified fcc metals has been analysed and discussed. 展开更多
关键词 FCC A Study on solid/melt Interfaces and the Formation of<100 Texture in solidified FCC Metals
下载PDF
Stability and melting behavior of boron phosphide under high pressure
2
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide STABILITY melting curve high pressure
下载PDF
Solid Bi_(2)O_(3)-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO_(2)
3
作者 Xiaoyan Wang Safeer Jan +1 位作者 Zhiyong Wang Xianbo Jin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期803-811,共9页
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met... CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction. 展开更多
关键词 BISMUTH carbon dioxide ELECTROCATALYSIS FORMATE solid electroreduction
下载PDF
Effects of projectile parameters on the momentum transfer and projectile melting during hypervelocity impact
4
作者 Wenjin Liu Qingming Zhang +6 位作者 Renrong Long Zizheng Gong Ren Jiankang Xin Hu Siyuan Ren Qiang Wu Guangming Song 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期89-103,共15页
The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation resul... The effects of projectile/target impedance matching and projectile shape on energy,momentum transfer and projectile melting during collisions are investigated by numerical simulation.By comparing the computation results with the experimental results,the correctness of the calculation and the statistical method of momentum transfer coefficient is verified.Different shapes of aluminum,copper and heavy tungsten alloy projectiles striking aluminum,basalt,and pumice target for impacts up to 10 km/s are simulated.The influence mechanism of the shape of the projectile and projectile/target density on the momentum transfer was obtained.With an increase in projectile density and length-diameter ratio,the energy transfer time between the projectile and targets is prolonged.The projectile decelerates slowly,resulting in a larger cratering depth.The energy consumed by the projectile in the excavation stage increased,resulting in lower mass-velocity of ejecta and momentum transfer coefficient.The numerical simulation results demonstrated that for different projectile/target combinations,the higher the wave impedance of the projectile,the higher the initial phase transition velocity and the smaller the mass of phase transition.The results can provide theoretical guidance for kinetic impactor design and material selection. 展开更多
关键词 Hypervelocity impact Energy partitioning Impact melting Momentum transfer
下载PDF
Experimental study on reactions between alkaline basaltic melt and orthopyroxenes: constraints on the evolution of lithospheric mantle in the North China Craton
5
作者 Hanqi He Mingliang Wang Hongfeng Tang 《Acta Geochimica》 EI CAS CSCD 2024年第2期354-365,共12页
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar... The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene. 展开更多
关键词 Alkaline basaltic melt ORTHOPYROXENE melt–mineral reaction High-temperature and high-pressure experiment Genesis of basalt Evolution of lithospheric mantle in the North China Craton
下载PDF
Formation and Properties of Organic Long Persistent Luminescence Crystals Containing Benzidine Derivatives by Melt Crystallization
6
作者 Norihito Doki Kiyoka Maruyama Masaaki Yokota 《Advances in Chemical Engineering and Science》 CAS 2024年第1期1-7,共7页
Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long per... Organic molecules that exhibit long persistent luminescence (LPL) are rapidly gaining attention for a variety of applications. In this study, organic molecules with simple structures were selected and organic long persistent luminescence (OLPL) crystals were prepared. The crystal structure of the prepared OLPL crystal was elucidated and the guideline for the design of OLPL crystal was clarified. LPL was observed in OLPL crystals prepared with TMB as the guest molecule and 1,2-bis(diphenylphosphino)ethane as the host molecule. XRD measurements of the OLPL crystals suggest that the guest molecule is a solid solution substituted in the stable crystal structure of the host molecule in a lattice-shrinking direction. 展开更多
关键词 melt Crystallization Host-Guest Chemistry
下载PDF
A critical review on solid-state welding of high entropy alloys-processing,microstructural characteristics and mechanical properties of joints
7
作者 Tushar Sonar Mikhail Ivanov +2 位作者 Evgeny Trofimov Aleksandr Tingaev Ilsiya Suleymanova 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期78-133,共56页
The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistan... The high entropy alloys(HEAs)are the newly developed high-performance materials that have gained significant importance in defence,nuclear and aerospace sector due to their superior mechanical properties,heat resistance,high temperature strength and corrosion resistance.These alloys are manufactured by the equal mixing or larger proportions of five or more alloying elements.HEAs exhibit superior mechanical performance compared to traditional engineering alloys because of the extensive alloying composition and higher entropy of mixing.Solid state welding(SSW)techniques such as friction stir welding(FSW),rotary friction welding(RFW),diffusion bonding(DB)and explosive welding(EW)have been efficiently deployed for improving the microstructural integrity and mechanical properties of welded HEA joints.The HEA interlayers revealed greater potential in supressing the formation of deleterious intermetallic phases and maximizing the mechanical properties of HEAs joints.The similar and dissimilar joining of HEAs has been manifested to be viable for HEA systems which further expands their industrial applications.Thus,the main objective of this review paper is to present a critical review of current state of research,challenges and opportunities and main directions in SSW of HEAs mainly CoCrFeNiMn and Al_xCoCrFeNi alloys.The state of the art of problems,progress and future outlook in SSW of HEAs are critically reviewed by considering the formation of phases,microstructural evolution and mechanical properties of HEAs joints. 展开更多
关键词 High entropy alloys solid state welding MICROSTRUCTURE Mechanical properties
下载PDF
Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells:Experimental and numerical study
8
作者 Shuo Han Tao Wei +6 位作者 Sijia Wang Yanlong Zhu Xingtong Guo Liang He Xiongzhuang Li Qing Huang Daifen Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期427-442,共16页
Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs s... Solid oxide fuel cells(SOFCs)have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies.However,traditional SOFCs suffer from having a higher volume,current leakage,complex connections,and difficulty in gas sealing.To solve these problems,Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support,resulting in the tubular segmented-in-series solid oxide fuel cells(SIS-SOFCs),which achieved higher output voltage.This work systematically reviews recent advances in the structures,preparation methods,perform-ances,and stability of tubular SIS-SOFCs in experimental and numerical studies.Finally,the challenges and future development of tubular SIS-SOFCs are also discussed.The findings of this work can help guide the direction and inspire innovation of future development in this field. 展开更多
关键词 solid oxide fuel cell SEGMENTED-IN-SERIES TUBULAR experimental study numerical study
下载PDF
The Application of Solid Waste in Thermal Insulation Materials: A Review
9
作者 Ming Liu Pinghua Zhu +2 位作者 Xiancui Yan Haichao Li Xintong Chen 《Journal of Renewable Materials》 EI CAS 2024年第2期329-347,共19页
As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.... As socioeconomic development continues,the issue of building energy consumption has attracted significant attention,and improving the thermal insulation performance of buildings has become a crucial strategic measure.Simultaneously,the application of solid waste in insulation materials has also become a hot topic.This paper reviews the sources and classifications of solid waste,focusing on research progress in its application as insulation materials in the domains of daily life,agriculture,and industry.The research shows that incorporating household solid waste materials,such as waste glass,paper,and clothing scraps into cementitious thermal insulation can significantly reduce the thermal conductivity of the materials,leading to excellent thermal insulation properties.Insulation materials prepared from agricultural solid waste,such as barley straw,corn stalk,chicken feather,and date palm fibers,possess characteristics of lightweight and strong thermal insulation.Industrial solid waste,including waste tires,iron tailings,and coal bottom ash,can also be utilized in the preparation of insulation materials.These innovative applications not only have positive environmental significance by reducing waste emissions and resource consumption,but also provide efficient and sustainable insulation solutions for the construction industry.However,to further optimize the mix design and enhance the durability of insulation materials,continuous research is required to investigate the mechanisms through which solid waste impacts the performance of insulation materials. 展开更多
关键词 solid waste building energy consumption insulation material SUSTAINABILITY
下载PDF
Improvement effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)on hydrogen storage performance of MgH_(2)
10
作者 Yingyan Zhao Zhibing Liu +5 位作者 Jiangchuan Liu Yunfeng Zhu Jiguang Zhang Yana Liu Xiaohui Hu Liquan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were suc... The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields. 展开更多
关键词 Magnesium hydride Reversible solid solution Core-shell nanoparticles Hydrogen storage performance
下载PDF
Anelasticity to plasticity transition in a model two-dimensional amorphous solid
11
作者 尚宝双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期143-147,共5页
Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the s... Anelasticity, as an intrinsic property of amorphous solids, plays a significant role in understanding their relaxation and deformation mechanism. However, due to the lack of long-range order in amorphous solids, the structural origin of anelasticity and its distinction from plasticity remain elusive. In this work, using frozen matrix method, we study the transition from anelasticity to plasticity in a two-dimensional model glass. Three distinct mechanical behaviors, namely,elasticity, anelasticity, and plasticity, are identified with control parameters in the amorphous solid. Through the study of finite size effects on these mechanical behaviors, it is revealed that anelasticity can be distinguished from plasticity.Anelasticity serves as an intrinsic bridge connecting the elasticity and plasticity of amorphous solids. Additionally, it is observed that anelastic events are localized, while plastic events are subextensive. The transition from anelasticity to plasticity is found to resemble the entanglement of long-range interactions between element excitations. This study sheds light on the fundamental nature of anelasticity as a key property of element excitations in amorphous solids. 展开更多
关键词 amorphous solid deformation mechanism anelasticity to plasticity transition molecular dynamics simulation
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments
12
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 Lithium metal batteries All-solid-state lithium metal battery Li dendrite solid electrolyte Interface
下载PDF
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries
13
作者 Huanhui Chen Xing Cao +6 位作者 Moujie Huang Xiangzhong Ren Yubin Zhao Liang Yu Ya Liu Liubiao Zhong Yejun Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期282-292,I0007,共12页
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ... The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries. 展开更多
关键词 solid-state lithium batteries Composite solid electrolyte In-situ polymerization Interfacial passivation layer Self-adaptability
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries
14
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
The variation in basal channels and basal melt rates of Pine Island Ice Shelf
15
作者 Mingliang Liu Zemin Wang +2 位作者 Baojun Zhang Xiangyu Song Jiachun An 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期22-34,共13页
In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly... In recent years,there has been a significant acceleration in the thinning,calving and retreat of the Pine Island Ice Shelf(PIIS).The basal channels,results of enhanced basal melting,have the potential to significantly impact the stability of the PIIS.In this study,we used a variety of remote sensing data,including Landsat,REMA DEM,ICESat-1 and ICESat-2 satellite altimetry observations,and Ice Bridge airborne measurements,to study the spatiotemporal changes in the basal channels from 2003 to 2020 and basal melt rate from 2010 to 2017 of the PIIS under the Eulerian framework.We found that the basal channels are highly developed in the PIIS,with a total length exceeding 450 km.Most of the basal channels are ocean-sourced or groundingline-sourced basal channels,caused by the rapid melting under the ice shelf or near the groundingline.A raised seabed prevented warm water intrusion into the eastern branch of the PIIS,resulting in a lower basal melt rate in that area.In contrast,a deepsea trough facilitates warm seawater into the mainstream and the western branch of the PIIS,resulting in a higher basal melt rate in the main-stream,and the surface elevation changes above the basal channels of the mainstream and western branch are more significant.The El Ni?o event in 2015–2016 possibly slowed down the basal melting of the PIIS by modulating wind field,surface sea temperature and depth seawater temperature.Ocean and atmospheric changes were driven by El Ni?o,which can further explain and confirm the changes in the basal melting of the PIIS. 展开更多
关键词 Pine Island Ice Shelf basal channel basal melt rate digital elevation models(DEMs) satellite altimetry
下载PDF
Lattice Boltzmann simulation study of anode degradation in solid oxide fuel cells during the initial aging process
16
作者 Shixue Liu Zhijing Liu +1 位作者 Shuxing Zhang Hao Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion b... For present solid oxide fuel cells(SOFCs),rapid performance degradation is observed in the initial aging process,and the dis-cussion of the degradation mechanism necessitates quantitative analysis.Herein,focused ion beam-scanning electron microscopy was em-ployed to characterize and reconstruct the ceramic microstructures of SOFC anodes.The lattice Boltzmann method(LBM)simulation of multiphysical and electrochemical processes in the reconstructed models was performed.Two samples collected from industrial-size cells were characterized,including a reduced reference cell and a cell with an initial aging process.Statistical parameters of the reconstructed microstructures revealed a significant decrease in the active triple-phase boundary and Ni connectivity in the aged cell compared with the reference cell.The LBM simulation revealed that activity degradation is dominant compared with microstructural degradation during the initial aging process,and the electrochemical reactions spread to the support layer in the aged cell.The microstructural and activity de-gradations are attributed to Ni migration and coarsening. 展开更多
关键词 solid oxide fuel cell anode degradation focused ion beam-scanning electron microscopy lattice Boltzmann method
下载PDF
Boosting oxygen reduction activity and CO_(2) resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600℃
17
作者 Juntao Gao Zhiyun Wei +5 位作者 Mengke Yuan Zhe Wang Zhe Lü Qiang Li Lingling Xu Bo Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期600-609,I0013,共11页
Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)... Developing efficient and stable cathodes for low-temperature solid oxide fuel cells(LT-SOFCs) is of great importance for the practical commercialization.Herein,we propose a series of Sm-modified Bi_(0.7-x)Sm_xSr_(0.3)FeO_(3-δ) perovskites as highly-active catalysts for LT-SOFCs.Sm doping can significantly enhance the electrocata lytic activity and chemical stability of cathode.At 600℃,Bi_(0.675)Sm_(0.025)Sr_(0.3)FeO_(3-δ)(BSSF25) cathode has been found to be the optimum composition with a polarization resistance of 0.098 Ω cm^2,which is only around 22.8% of Bi_(0.7)Sr_(0.3)FeO_(3-δ)(BSF).A full cell utilizing BSSF25 displays an exceptional output density of 790 mW cm^(-2),which can operate continuously over100 h without obvious degradation.The remarkable electrochemical performance observed can be attributed to the improved O_(2) transport kinetics,superior surface oxygen adsorption capacity,as well as O_(2)p band centers in close proximity to the Fermi level.Moreover,larger average bonding energy(ABE) and the presence of highly acidic Bi,Sm,and Fe ions restrict the adsorption of CO_(2) on the cathode surface,resulting in excellent CO_(2) resistivity.This work provides valuable guidance for systematic design of efficient and durable catalysts for LT-SOFCs. 展开更多
关键词 Low-temperature solid oxide fuel cell Perovskite cathode DFT calculations CO_(2) tolerance
下载PDF
Unique double-layer solid electrolyte interphase formed with fluorinated ether-based electrolytes for high-voltage lithium metal batteries
18
作者 Ruo Wang Jiawei Li +11 位作者 Bing Han Qingrong Wang Ruohong Ke Tong Zhang Xiaohu Ao Guangzhao Zhang Zhongbo Liu Yunxian Qian Fangfang Pan Iseult Lynch Jun Wang Yonghong Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期532-542,I0012,共12页
Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the... Li metal batteries using high-voltage layered oxides cathodes are of particular interest due to their high energy density.However,they suffer from short lifespan and extreme safety concerns,which are attributed to the degradation of layered oxides and the decomposition of electrolyte at high voltage,as well as the high reactivity of metallic Li.The key is the development of stable electrolytes against both highvoltage cathodes and Li with the formation of robust interphase films on the surfaces.Herein,we report a highly fluorinated ether,1,1,1-trifluoro-2-[(2,2,2-trifluoroethoxy)methoxy]ethane(TTME),as a cosolvent,which not only functions as a diluent forming a localized high concentration electrolyte(LHCE),but also participates in the construction of the inner solvation structure.The TTME-based electrolyte is stable itself at high voltage and induces the formation of a unique double-layer solid electrolyte interphase(SEI)film,which is embodied as one layer rich in crystalline structural components for enhanced mechanical strength and another amorphous layer with a higher concentration of organic components for enhanced flexibility.The Li||Cu cells display a noticeably high Coulombic efficiency of 99.28%after 300 cycles and Li symmetric cells maintain stable cycling more than 3200 h at 0.5 mA/cm^(2) and 1.0m Ah/cm^(2).In addition,lithium metal cells using LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) and Li CoO_(2) cathodes(both loadings~3.0 m Ah/cm^(2))realize capacity retentions of>85%over 240 cycles with a charge cut-off voltage of 4.4 V and 90%for 170 cycles with a charge cut-off voltage of 4.5 V,respectively.This study offers a bifunctional ether-based electrolyte solvent beneficial for high-voltage Li metal batteries. 展开更多
关键词 Lithium metal batteries High-voltage layered oxides Fluorinated ether-based electrolytes solid electrolyte interphase Cathode electrolyte interphase
下载PDF
Unraveling the enigma:A comprehensive review of solid pseudopapillary tumor of the pancreas
19
作者 Ye-Cheng Xu De-Liang Fu Feng Yang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期614-629,共16页
Solid pseudopapillary tumor of the pancreas(SPTP)is a rare neoplasm predom-inantly observed in young females.Pathologically,CTNNB1 mutations,β-catenin nuclear accumulation,and subsequent Wnt-signaling pathway activat... Solid pseudopapillary tumor of the pancreas(SPTP)is a rare neoplasm predom-inantly observed in young females.Pathologically,CTNNB1 mutations,β-catenin nuclear accumulation,and subsequent Wnt-signaling pathway activation are the leading molecular features.Accurate preoperative diagnosis often relies on imaging techniques and endoscopic biopsies.Surgical resection remains the mainstay treatment.Risk models,such as the Fudan Prognostic Index,show promise as predictive tools for assessing the prognosis of SPTP.Establishing three types of metachronous liver metastasis can be beneficial in tailoring individu-alized treatment and follow-up strategies.Despite advancements,challenges persist in understanding its etiology,establishing standardized treatments for unresectable or metastatic diseases,and developing a widely recognized grading system.This comprehensive review aims to elucidate the enigma by consolidating current knowledge on the epidemiology,clinical presentation,pathology,molecular characteristics,diagnostic methods,treatment options,and prognostic factors. 展开更多
关键词 PANCREAS solid pseudopapillary tumor Β-CATENIN Endoscopic ultrasound Surgery RECURRENCE Liver metastasis Prognostic prediction
下载PDF
Study on Solid Fermentation and Antioxidant Function of Natto
20
作者 Junxia SONG Hongbing QI Yanhong MAO 《Asian Agricultural Research》 2024年第1期32-36,共5页
[Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temper... [Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temperature,time,initial pH and inoculum amount on the antioxidant activity of natto solid fermentation.The optimum conditions of natto solid fermentation were determined and the antioxidant ac-tivity of natto extract was compared.[Results]The optimal fermentation conditions were as follows:temperature 32℃,initial pH 7.0,inocu-lation amount 8%,fermentation time 32 h.The hydroxyl radical scavenging rate of natto solid fermentation crude extract was the highest,which was 82.7%.The optimized nato fermentation extract showed stronger scavenging ability for-OH and O,:,and showed obvious dose-effect relationship.ICso was 3.63 and 4.24 mg/mL,respectively,and the scavenging efficiency was 1.3 and 1.9 times higher than that of the unoptimized fermentation extract,respectively.[Conclusions]Natto is rich in nattokinase and other functional factors,and its antioxidant ac-tivity can be improved by optimizing fermentation technology,so that natto products can be widely used,including cosmetic raw materials,nat-to skin care soap,health food and medicine,etc.,and have a broader development prospect. 展开更多
关键词 NATTO solid fermentation Hydroxyl radical scavenging rate Antioxidant activity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部