期刊文献+
共找到32,807篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of droplet characteristics on liquid-phase distribution in spray zone of internal mixing air-mist nozzle
1
作者 Wei-li Wu Chang-gui Cheng +2 位作者 Yang Li Shi-fa Wei De-li Chen 《China Foundry》 SCIE EI CAS CSCD 2024年第2期185-196,共12页
In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In ord... In continuous casting production,droplet characteristics are important parameters for evaluating the nozzle atomization quality,and have a significant impact on the secondary cooling effect and the slab quality.In order to study the behavior of atomized droplets after reaching the slab surface and to optimize the spray cooling effect,the influence of droplet diameter and droplet velocity on the migration behavior of droplets in the secondary cooling zone was analyzed by FLUENT software.Results show that the droplets in the spray zone and on the slab surface are mainly concentrated in the center,thus,the liquid volume fraction in the center is higher than that of either side.As the droplet diameter increases,the region of high liquid volume fraction on the slab surface becomes wider,and the liquid phase distribution in the slab width direction becomes uneven.Although increasing the droplet velocity at the nozzle exit has little effect on droplet diffusion in the spray zone,the distribution becomes more uneven due to more liquid reaches the slab surface per unit time.A prediction formula of the maximum water flow rate on the slab surface for specific droplet characteristics was proposed based on dimensionless analysis and validated by simulated data.A nozzle spacing of 210 mm was recommended under the working conditions in this study,which ensures effective coverage of the spray water over the slab surface and enhances the distribution uniformity of water flow rate in the transverse direction. 展开更多
关键词 continuous casting secondary cooling zone internal mixing air-mist nozzle droplet characteristics liquid phase distribution water flow rate
下载PDF
Research on Performance Optimization of Liquid Cooling and Composite Phase Change Material Coupling Cooling Thermal Management System for Vehicle Power Battery 被引量:1
2
作者 Gang Wu Feng Liu +3 位作者 Sijie Li Na Luo Zhiqiang Liu Yuqaing Li 《Journal of Renewable Materials》 SCIE EI 2023年第2期707-730,共24页
The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pac... The serpentine tube liquid cooling and composite PCM coupled cooling thermal management system is designed for 18650 cylindrical power batteries,with the maximum temperature and temperature difference of the power pack within the optimal temperature operating range as the target.The initial analysis of the battery pack at a 5C discharge rate,the influence of the single cell to cooling tube distance,the number of cooling tubes,inlet coolant temperature,the coolant flow rate,and other factors on the heat dissipation performance of the battery pack,initially determined a reasonable value for each design parameter.A control strategy is used to regulate the inlet flow rate and coolant temperature of the liquid cooling system in order to make full use of the latent heat of the composite PCM and reduce the pump’s energy consumption.The simulation results show that the maximum battery pack temperature of 309.8 K and the temperature difference of 4.6 K between individual cells with the control strategy are in the optimal temperature operating range of the power battery,and the utilization rate of the composite PCM is up to 90%. 展开更多
关键词 Power battery thermal management phase change materials liquid cooling
下载PDF
Numerical Simulation and Analysis of Solid-liquid Two-phase Flow in Centrifugal Pump 被引量:56
3
作者 ZHANG Yuliang LI Yi +2 位作者 CUI Baoling ZHU Zuchao DOU Huashu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期53-60,共8页
The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the ... The flow with solid-liquid two-phase media inside centrifugal pumps is very complicated and the relevant method for the hydraulic design is still immature so far. There exist two main problems in the operation of the two-phase flow pumps, i.e., low overall efficiency and severe abrasion. In this study, the three-dimensional, steady, incompressible, and turbulent solid-liquid two-phase flows in a low-specific-speed centrifugal pump are numerically simulated and analyzed by using a computational fluid dynamics (CFD) code based on the mixture model of the two-phase flow and the RNG k-~ two-equation turbulence model, in which the influences of rotation and curvature are fully taken into account. The coupling between impeller and volute is implemented by means of the frozen rotor method. The simulation results predicted indicate that the solid phase properties in two-phase flow, especially the concentration, the particle diameter and the density, have strong effects on the hydraulic performance of the pump. Both the pump head and the efficiency are reduced with increasing particle diameter or concentration. However, the effect of particle density on the performance is relatively minor. An obvious jet-wake flow structure is presented near the volute tongue and becomes more remarkable with increasing solid phase concentration. The suction side of the blade is subject to much more severe abrasion than the pressure side. The obtained results preliminarily reveal the characteristics of solid-liquid two-phase flow in the centrifugal pump, and are helpful for improvement and empirical correction in the hydraulic design of centrifugal pumps. 展开更多
关键词 centrifugal pump solid-liquid two-phase particle property hydraulic performance ABRASION numerical simulation
下载PDF
Numerical simulation and analysis of solid-liquid two-phase threedimensional unsteady flow in centrifugal slurry pump 被引量:16
4
作者 吴波 汪西力 +1 位作者 LIU Hui 徐海良 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期3008-3016,共9页
Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of... Based on RNG k-ε turbulence model and sliding grid technique, solid-liquid two-phase three-dimensional(3-D) unsteady turbulence of full passage in slurry pump was simulated by means of Fluent software. The effects of unsteady flow characteristics on solid-liquid two-phase flow and pump performance were researched under design condition. The results show that clocking effect has a significant influence on the flow in pump, and the fluctuation of flow velocity and pressure is obvious, particularly near the volute tongue, at the position of small sections of volute and within diffuser. Clocking effect has a more influence on liquid-phase than on solid-phase, and the wake-jet structure of relative velocity of solid-phase is less obvious than liquid-phase near the volute tongue and the impeller passage outlet. The fluctuation of relative velocity of solid-phase flow is 7.6% smaller than liquid-phase flow at the impeller outlet on circular path. Head and radial forces of the impeller are 8.1% and 85.7% of fluctuation, respectively. The results provide a theoretical basis for further research for turbulence, improving efficient, reducing the hydraulic losses and wear. Finally, field tests were carried out to verify the operation and wear of slurry pump. 展开更多
关键词 固液两相流 非定常流动 泥浆泵 数值模拟 三维 k-ε湍流模型 离心式 滑移网格技术
下载PDF
Computational Analysis of Centrifugal Pump Delivering Solid-liquid Two-phase Flow during Startup Period 被引量:13
5
作者 ZHANG Yuliang LI Yi +1 位作者 ZHU Zuchao CUI Baoling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第1期178-185,共8页
The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all th... The transient behavior of centrifugal pumps during transient operating periods, such as startup and stopping, has drawn more and more attention recently because of urgent needs in engineering. Up to now, almost all the existing studies on this behavior are limited to using water as working fluid. The study on the transient behavior related to solid-liquid two-phase flow has not been seen yet. In order to explore the transient characteristics of a high specific-speed centrifugal pump during startup period delivering the pure water and solid-liquid two-phase flow, the transient flows inside the pump are numerically simulated using the dynamic mesh method. The variable rotational speed and flow rate with time obtained from experiment are best fitted as the function of time, and are written into computational fluid dynamics (CFD) code-FLUENT by using a user defined function. The predicted heads are compared with experimental results when pumping pure water. The results show that the difference in the transient performance during startup period is very obvious between water and solid-liquid two-phase flow during the later stage of startup process. Moreover, the time for the solid-liquid two-phase flow to achieve a stable condition is longer than that for water. The solid-liquid two-phase flow results in a higher impeller shaft power, a larger dynamic reaction force, a more violent fluctuation in pressure and a reduced stable pressure rise comparing with water. The research may be useful to tmderstanding on the transient behavior of a centrifugal pump under a solid-liquid two-phase flow during startup period. 展开更多
关键词 centrifugal pump solid-liquid two-phase flow STARTUP transient performance
下载PDF
RESEARCH ON METHOD TO CALCULATE VELOCITIES OF SOLID PHASE AND LIQUID PHASE IN DEBRIS FLOW 被引量:4
6
作者 陈洪凯 唐红梅 陈野鹰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第3期399-408,共10页
Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two... Velocities of solid phase and liquid phase in debris flow are one key problem to research on impact and abrasion mechanism of banks and control structures under action of debris flow. Debris flow was simplified as two-phase liquid composed of solid phase with the same diameter particles and liquid phase with the same mechanical features. Assume debris flow was one-dimension two-phase liquid moving to one direction, then general equations of velocities of solid phase and liquid phase were founded in two-phase theory. Methods to calculate average pressures, volume forces and surface forces of debris flow control volume were established. Specially, surface forces were ascertained using Bingham's rheology equation of liquid phase and Bagnold's testing results about interaction between particles of solid phase. Proportional coefficient of velocities between liquid phase and solid phase was put forward, meanwhile, divergent coefficient between theoretical velocity and real velocity of solid phase was provided too. To state succinctly before, method to calculate velocities of solid phase and liquid phase was obtained through solution to general equations. The method is suitable for both viscous debris flow and thin debris flow. Additionally, velocities every phase can be identified through analyzing deposits in-situ after occurring of debris flow. It is obvious from engineering case the result in the method is consistent to that in real-time field observation. 展开更多
关键词 debris flow two-phase fluid velocities of solid phase and liquid phase calculation method VERIFICATION
下载PDF
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:12
7
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 COUPLED liquid-gas-solid three-phase model Pore-air pressure UNSATURATED soil slope stability Rainfall INFILTRATION
下载PDF
Numerical Simulation of Erosion-Corrosion in the Liquid-Solid Two-Phase Flow 被引量:8
8
作者 张政 程学文 +2 位作者 郑玉贵 柯伟 姚治铭 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第4期347-355,共9页
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main co... Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross-section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Eulerian-Lagrangian approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible. 展开更多
关键词 液固两相流 磨蚀-腐蚀 数值模拟 流体力学 化工过程
下载PDF
Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke 被引量:3
9
作者 Li Guomei Wang Yueshe +3 位作者 He Renyang Cao Xuewen Lin Changzhi Meng Tao 《Petroleum Science》 SCIE CAS CSCD 2009年第1期91-97,共7页
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa... Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L). 展开更多
关键词 solid-liquid two-phase flow discrete particle hard sphere model CHOKE erosion rate antierosion numerical simulation
下载PDF
Rapid analysis of fifteen sulfonamide residues in pork and fish samples by automated on-line solid phase extraction coupled to liquid chromatography–tandem mass spectrometry 被引量:6
10
作者 Junmei Ma Sufang Fan +3 位作者 Lei Sun Liangna He Yan Zhang Qiang Li 《Food Science and Human Wellness》 SCIE 2020年第4期363-369,共7页
The aim of this work was to develop an automated on-line solid phase extraction(SPE)with liquid chromatography-tandem mass spectrometry method for the detection of fifteen sulfonamides in pork and fish samples.Samples... The aim of this work was to develop an automated on-line solid phase extraction(SPE)with liquid chromatography-tandem mass spectrometry method for the detection of fifteen sulfonamides in pork and fish samples.Samples were extracted with 0.2%formic acid acetonitrile solution,purified by on-line SPE device with HLB column,then separated by XBridge C18 column,using 0.1%formic acid solution and acetonitrile as the mobile phase.Mass spectrometric data was acquired under multiple reaction monitoring(MRM)mode using positive ionization electrospray.Internal standard method was used in the quantification,good linear relationship was got in range of 0.1–100 ng/mL and correlation coefficient was higher than 0.9990.The limits of detection were in the range of 0.125–2.00g/kg and the limits of quantitation were in the range of 0.250–5.00g/kg.Recoveries of the method were in range of 78.3%–99.3%,relative standard deviation were lower than 10%.The method was simple,sensitivity,and could be used for routine supervision and analysis of fifteen sulfonamides in pork and fish. 展开更多
关键词 liquid chromatography–tandem mass SPECTROMETRY On-line solid phase extraction SULFONAMIDES Internal standard quantification
下载PDF
Flux vector splitting solutions for coupling hydraulic transient of gas-liquid-solid three-phase flow in pipelines 被引量:3
11
作者 陈明 焦光伟 +1 位作者 邓松圣 王建华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期811-822,共12页
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in... The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability. 展开更多
关键词 gas-liquid-solid three-phase flow fluid-structure interaction hydraulic transient flux vector splitting second-order precision
下载PDF
Simultaneous Determination of Bisphenols and Alkylphenols in Water by Solid Phase Extraction and Ultra Performance Liquid Chromatography-tandem Mass Spectrometry 被引量:4
12
作者 SHAN Xiao Mei SHEN Deng Hui +2 位作者 WANG Bing Shuang LU Bei Bei HUANG Fa Yuan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2014年第6期471-474,共4页
To establish an analytical method for determination of four bisphenols (BPA, BPB, BPF, and BPS) and two alkylphenols (4-n-OP, 4-n-NP) in water by ultra performance liquid chromatography- tandem mass spectrometry ... To establish an analytical method for determination of four bisphenols (BPA, BPB, BPF, and BPS) and two alkylphenols (4-n-OP, 4-n-NP) in water by ultra performance liquid chromatography- tandem mass spectrometry (UPLC/MS/MS). The water samples were extracted and condensed with solid-phase extraction (SPE) using C18 cartridges and eluted by acetonitrile. Separation was carried out with Acquity BEH C8 column and detection were performed by UPLC/MS/MS. Quantification was calculated by using the internal standard BPA-d16 and 4-n-NP-d8. The linear correlation coefficients of these compounds in the range of 1.0-100.0μg/L were all over 0.999. The minimum detectable concentrations were 0.75-1.0 ng/L, and the recoveries ranged from 87.0% to 106.9%. 展开更多
关键词 UPLC BPA Simultaneous Determination of Bisphenols and Alkylphenols in Water by solid phase Extraction and Ultra Performance liquid Chromatography-tandem Mass Spectrometry MASS
下载PDF
Liquid–liquid phase transition in confined liquid titanium
13
作者 张迪 段云瑞 +6 位作者 郑培儒 马英杰 钱俊平 李志超 黄建 蒋妍彦 李辉 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期391-398,共8页
We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liqu... We report the layering and liquid–liquid phase transition of liquid titanium confined between two parallel panel walls.Abnormal changes in the volume and the potential energy confirm the existence of the liquid–liquid phase transition of the liquid titanium. The typical feature of the liquid–liquid phase transition is layering, which is induced by the slit size,pressure and temperature. We highlight the fact that the slit size and pressure will determine the number of layers. In addition, with the change in the slit size, the density of the confined liquid expresses a fluctuating law. The phase diagram of the layering transition is drawn to clearly understand the layering. This study provides insights into the liquid–liquid phase transition of liquid metal in a confined space. 展开更多
关键词 TITANIUM layering transition liquidliquid phase transition confined space
下载PDF
Development of a Rapid and Efficient Liquid Chromatography Method for Determination of Gibberellin A4 in Plant Tissue, with Solid Phase Extraction for Purification and Quantification 被引量:1
14
作者 Julia Medrano Macías Rahim Foroughbakhch Pournavab +1 位作者 Manuel Humberto Reyes-Valdés Adalberto Benavides-Mendoza 《American Journal of Plant Sciences》 2014年第5期573-583,共11页
A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithe... A new, rapid and efficient reverse phase Liquid Chromatography (RP-LC) method was developed for determination of Gibberellin A4 (GA4) in samples of flower stalk of Dasylirion cedrosanum and vegetative tissue of Epithelantha micromeris. Purification of GA4 was carried out by solid phase extraction (SPE), in Epithelantha micromeris. In the chromatography method was obtaining a retention time of 2.1 min, using Hypersil GOLD C-18 column (100 × 4.6 mm dim and size particle 5 μ), mobile phase 50/50 acetonitrile/water and a flow 1.0 ml/min. Detection was carried out by a UV detector set at 205 nm, and a quantization limit of 0.4 mg/L. The obtained correlation coefficient was 0.995. 展开更多
关键词 Dasyrilon cedrosanum Epithelantha micromeris PHYTOHORMONE Separation Plant Growth REGULATORS REVERSE phase liquid Chromatography solid phase Extraction
下载PDF
Uncertainty Evaluation of Determination of Microcystin MC-LR in Environmental Samples by Solid Phase Extraction-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry 被引量:1
15
作者 Zhao Bin Zhang Min Zhang Fuhai 《Meteorological and Environmental Research》 CAS 2016年第6期54-57,共4页
To assess uncertainty of determination of MC-LR in environmental samples by solid phase extraction- ultra performance liquid chromatography- tandem mass spectrometry,the sources of the uncertainty were evaluated first... To assess uncertainty of determination of MC-LR in environmental samples by solid phase extraction- ultra performance liquid chromatography- tandem mass spectrometry,the sources of the uncertainty were evaluated firstly,and the expanded uncertainty was calculated finally.The results show that when MC-LR concentration in the water samples was 0.50 μg/L,the expanded uncertainty was 0.00628 μg/L(k=2). 展开更多
关键词 UNCERTAINTY solid phase extraction Ultra performance liquid CHROMATOGRAPHY TANDEM mass SPECTROMETRY MICROCYSTIN MC-LR China
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
16
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
下载PDF
Thermal and Electrical Properties of Liquid Metal Gallium During Phase Transition
17
作者 Xizu Wang Durga Venkata Maheswar Repaka +3 位作者 Ady Suwardi Qiang Zhu Jing Wu Jianwei Xu 《Transactions of Tianjin University》 EI CAS 2023年第3期209-215,共7页
Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity a... Liquid metal gallium has been widely used in numerous fields, from nuclear engineering, catalysts, and energy storage to electronics owing to its remarkable thermal and electrical properties along with low viscosity and nontoxicity. Compared with high-temperature liquid metals, room-temperature liquid metals, such as gallium(Ga), are emerging as promising alternatives for fabricating advanced energy storage devices, such as phase change materials, by harvesting the advantageous properties of their liquid state maintained without external energy input. However, the thermal and electrical properties of liquid metals at the phase transition are rather poorly studied, limiting their practical applications. In this study, we reported on the physical properties of the solid–liquid phase transition of Ga using a custom-designed, solid–liquid electrical and thermal measurement system. We observed that the electrical conductivity of Ga progressively decreases with an increase in temperature. However, the Seebeck coefficient of Ga increases from 0.2 to 2.1 μV/K, and thermal conductivity from 7.6 to 33 W/(K·m). These electrical and thermal properties of Ga at solid–liquid phase transition would be useful for practical applications. 展开更多
关键词 liquid metal GALLIUM Electrical conductivity Thermal conductivity Seebeck coefficients phase transition
下载PDF
Local Gas Phase Flow Characteristics of a Gas-Liquid-Solid Three-Phase Reversed Flow Jet Loop Reactor 被引量:2
18
作者 闻建平 周怀 陈云琳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第1期119-122,共4页
The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reac... The local gas-phase flow characteristics such as local gas holdup (εg), local bubble velocity (Vb) and local bubble mean diameter(db) at a specified point in a gas-liquid-solid three-phase reversed flow jet loop reactor was experimentally investigated by a five-point conductivity probe. The effects of gas jet flow rate, liquid jet flow rate, solid loading, nozzle diameter and axial position on the local εg,Vb and db profiles were discussed. The presence of solids at low solid concentrations not only increased the local εg and Vb, but also decreased the local db. The optimum solid olading for the maximum local εg and Vb together with the minimum local db was 0.16×10^-3m^3, corresponding to a solid volume fraction,εS=2.5%. 展开更多
关键词 气-液-固三相逆流喷射环管反应器 化学工程 气相流动特性
下载PDF
Thermal rectification induced by Wenzel–Cassie wetting state transition on nano-structured solid–liquid interfaces
19
作者 李海洋 王军 夏国栋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期520-526,共7页
Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectificatio... Thermal rectification refers to the phenomenon by which the magnitude of the heat flux in one direction is much larger than that in the opposite direction.In this study,we propose to implement the thermal rectification phenomenon in an asymmetric solid–liquid–solid sandwiched system with a nano-structured interface.By using the non-equilibrium molecular dynamics simulations,the thermal transport through the solid–liquid–solid system is examined,and the thermal rectification phenomenon can be observed.It is revealed that the thermal rectification effect can be attributed to the significant difference in the interfacial thermal resistance between Cassie and Wenzel states when reversing the temperature bias.In addition,effects of the liquid density,solid–liquid bonding strength and nanostructure size on the thermal rectification are examined.The findings may provide a new way for designs of certain thermal devices. 展开更多
关键词 thermal rectification wetting transition interfacial thermal resistance solidliquid interfaces
下载PDF
Study on Liquid-Phase Axial Dispersion in Converging Taper Liquid-Solid Fluidized Beds 被引量:1
20
作者 夏素兰 朱家骅 胡新辉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第2期134-139,共6页
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq... It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB.The behavior produces less liquid-phase axial dispersion. Exverimental results show good coincidence. 展开更多
关键词 倒锥型液固流化床 液相返混 径向液体速率 空隙组分
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部