A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomp...A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.展开更多
BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of...BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.展开更多
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ...Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues...Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.展开更多
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ...Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.展开更多
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ...Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.展开更多
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in...The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.展开更多
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this...The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric press...Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.展开更多
We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emi...We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.展开更多
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder...The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.展开更多
Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion ba...Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.展开更多
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro...Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.展开更多
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin...Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design.展开更多
Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prosp...Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.展开更多
基金the Natural Science Foundation of Anhui Province, China (No. 2006KJ033B)
文摘A modified solid-state route was attempted to prepare Y0.95 Eu0.05PO4 PDP phosphor, involving milling a powdered mixture of YCl3, EuCl3, and (NH4)2HPO4 and calcining the milling-derived precursor. The thermal decomposition behavior of the milling-derived precursor was investigated by thermogravimetric analysis (TGA). Phase compositions, morphologies, and luminescence properties of the prepared phosphor powder were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and vacuum ultraviolet (VUV) emission spectra, respectively. The results indicated that the Y0.95Eu0.05PO4 phosphor powder obtained at a calcination temperature of 900℃ was xenotime-structured. The phosphor powder particles were uniform and spherical-shaped with a primary particle size of-200 um. In comparison with that derived by the conventional solid-state route, the phosphor powder prepared by the modified solid-state route exhibited a higher color purity, presenting a predominant emission peak at 619 nm under 147 um VUV excitation.
基金the Foundation for Cancer Research supported by Kyoto Preventive Medical Center and the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid KAKENHI,No.JP 22K21080.
文摘BACKGROUND Colorectal cancer(CRC)is a global health concern,with advanced-stage diagnoses contributing to poor prognoses.The efficacy of CRC screening has been well-established;nevertheless,a significant proportion of patients remain unscreened,with>70%of cases diagnosed outside screening.Although identifying specific subgroups for whom CRC screening should be particularly recommended is crucial owing to limited resources,the association between the diagnostic routes and identification of these subgroups has been less appreciated.In the Japanese cancer registry,the diagnostic routes for groups discovered outside of screening are primarily categorized into those with comorbidities found during hospital visits and those with CRC-related symptoms.AIM To clarify the stage at CRC diagnosis based on diagnostic routes.METHODS We conducted a retrospective observational study using a cancer registry of patients with CRC between January 2016 and December 2019 at two hospitals.The diagnostic routes were primarily classified into three groups:Cancer screening,follow-up,and symptomatic.The early-stage was defined as Stages 0 or I.Multivariate and univariate logistic regressions were exploited to determine the odds of early-stage diagnosis in the symptomatic and cancer screening groups,referencing the follow-up group.The adjusted covariates were age,sex,and tumor location.RESULTS Of the 2083 patients,715(34.4%),1064(51.1%),and 304(14.6%)belonged to the follow-up,symptomatic,and cancer screening groups,respectively.Among the 2083 patients,CRCs diagnosed at an early stage were 57.3%(410 of 715),23.9%(254 of 1064),and 59.5%(181 of 304)in the follow-up,symptomatic,and cancer screening groups,respectively.The symptomatic group exhibited a lower likelihood of early-stage diagnosis than the follow-up group[P<0.001,adjusted odds ratio(aOR),0.23;95%confidence interval(95%CI):0.19-0.29].The likelihood of diagnosis at an early stage was similar between the follow-up and cancer screening groups(P=0.493,aOR for early-stage diagnosis in the cancer screening group vs follow-up group=1.11;95%CI=0.82-1.49).CONCLUSION CRCs detected during hospital visits for comorbidities were diagnosed earlier,similar to cancer screening.CRC screening should be recommended,particularly for patients without periodical hospital visits for comorbidities.
基金funded by the Ministry of Science and ICT through the National Research Foundation of Korea(202300262366)the Basic Research Lab(RS-2023-00219710)the Ministry of Commerce,Industry,and Energy(20025720)of Korea.
文摘Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金Special Fund for Carbon Peak and Carbon Neutralization Scientific and Technological Innovation Project of Jiangsu Province,Grant/Award Number:BE2022042National Natural Science Foundation of China,Grant/Award Numbers:22201275,51873086,51673096,51873086,51673096+2 种基金the Project on the Enterprises-Universities-Research Cooperation of Kucap Smart Technology(Nanjing)Co.,Ltd.,Grant/Award Number:202240607Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23-1407Anhui Provincial Natural Science Foundation,Grant/Award Number:2208085QB32。
文摘Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.
基金supported by the CAS Project of Young Scientists in Basic Research(YSBR-058)the National Natural Science Foundation of China(22279135)+2 种基金the Outstanding Youth Foundation of Liaoning Province(2023JH3/10200019)the Dalian Science and Technology Innovation Fund(2023JJ11CG004)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(YIICE E411010316)。
文摘Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.
基金the National Natural Science Foundation of China(22178120)the China Postdoctoral Science Foundation(2022TQ0173,2023M731922,2022M720076,BX20220182,2023M731921,2023M731919,2023M741919).
文摘Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
基金the funding support from the National Natural Science Foundation of China(22222902,22209062)the Natural Science Foundation of Jiangsu Province(BK20200047)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB150004)the Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China(JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program(202310320066Z)。
文摘The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
文摘The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale.Network slicing is crucial in delivering services for different,demanding vertical applications in this context.Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations.However,the existing IP(Internet Protocol)over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators.Conventional inter-domain routing methods,like Border Gateway Protocol(BGP),cannot make routing decisions based on performance,which frequently results in traffic flowing across congested paths that are never optimal.To address these issues,we propose CoopAI-Route,a multi-agent cooperative deep reinforcement learning(DRL)system utilizing hierarchical software-defined networks(SDN).This framework enforces network slicing in multi-domain networks and cooperative communication with various administrators to find performance-based routes in intra-and inter-domain.CoopAI-Route employs the Distributed Global Topology(DGT)algorithm to define inter-domain Quality of Service(QoS)paths.CoopAI-Route uses a DRL agent with a message-passing multi-agent Twin-Delayed Deep Deterministic Policy Gradient method to ensure optimal end-to-end routes adapted to the specific requirements of network slicing applications.Our evaluation demonstrates CoopAI-Route’s commendable performance in scalability,link failure handling,and adaptability to evolving topologies compared to state-of-the-art methods.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
基金support by a JSPS KAKENHI,Grant-in-Aid for Scientific Research(C),Grant Number JP19K05609.
文摘Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12365003, 12364024, and 11864014)the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20212BAB201014 and 20224BAB201023)。
文摘We propose a frequency-tunable router of single photons with high routing efficiency, which is constructed by two waveguides mediately linked by a single-mode whispering gallery resonator with a driven three-level emitter. Quantum routing probability in the output port is obtained via the real-space Hamiltonian. By adjusting the resonator–emitter coupling and the drive, the desired continuous central frequencies for the resonance peaks of routing photons can be manipulated nearly linearly, with the assistance of Rabi splitting effect and optical Stark shift. The proposed routing system may provide potential applications in designing other frequency-modulation quantum optical devices, such as multiplexers,filters, and so on.
基金This work was supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920).The authors acknowledge the Microscopy and Microanalysis Facility—John de Laeter Centre,Curtin University for the scientific and technical assistance of material characterizations.L.Zhao and C.Cao would like to acknowledge the PhD scholarship supported by BLACKSTONE Minerals Ltd.
文摘The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
基金funded by The Central Government Guides Local Science and Technology Development Special Fund Projects(Grant No.YDZJSX2022B003)the Shanxi Province Science and Technology Major Projects(Grant No.202101120401008)。
文摘Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.
基金supported in part by JSPS KAKENHI Grant Numbers in Japan(JP21H05229 to I.K.)JST CREST(JPMJCR21B2)The authors also thank Nobuko Yamaguchi for the financial support.
文摘Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.19DZ2270100),China。
文摘Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design.
基金supported by the Natural Science Foundation of China(61901142)the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ093).
文摘Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.