期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Development of wet adhesion of honeybee arolium incorporated polygonal structure with three-phase composite interfaces
1
作者 Lulu LIANG Jieliang ZHAO +5 位作者 Qun NIU Li YU Xiangbing WU Wenzhong WANG Shaoze YAN Zhenglei YU 《Friction》 SCIE EI CAS CSCD 2024年第2期215-230,共16页
Inspired by the dynamic wet adhesive systems in nature,various artificial adhesive surfaces have been developed but still face different challenges.Crucially,the theoretical mechanics of wet adhesives has never been s... Inspired by the dynamic wet adhesive systems in nature,various artificial adhesive surfaces have been developed but still face different challenges.Crucially,the theoretical mechanics of wet adhesives has never been sufficiently revealed.Here,we develop a novel adhesive mechanism for governing wet adhesion and investigate the biological models of honeybee arolium for reproducing the natural wet adhesive systems.Micro-nano structures of honeybee arolium and arolium-prints were observed by Cryogenic scanning electron microscopy(Cryo-SEM),and the air pockets were found in the contact interface notably.Subsequently,the adhesive models with a three-phase composite interface(including air pockets,liquid secretion,and hexagonal frames of arolium),were formed to analyze the wet adhesion of honeybee arolium.The results of theoretical calculations and experiments indicated an enhanced adhesive mechanism of the honeybee by liquid self-sucking effects and air-embolism effects.Under these effects,normal and shear adhesion can be adjusted by controlling the proportion of liquid secretion and air pockets in the contact zone.Notably,the air-embolism effects contribute to the optimal coupling of smaller normal adhesion with greater shear adhesion,which is beneficial for the high stride frequency of honeybees.These works can provide a fresh perspective on the development of bio-inspired wet adhesive surfaces. 展开更多
关键词 honeybee arolium air pockets wet adhesion a three-phase interface self-sucking effects air-embolism effects
原文传递
Insightful understanding of three-phase interface behaviors in 1T-2H MoS_(2)/CFP electrode for hydrogen evolution improvement 被引量:1
2
作者 Jiamu Cao Jing Zhou +3 位作者 Mingxue Li Junyu Chen Yufeng Zhang Xiaowei Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3745-3751,共7页
Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors... Hydrogen evolution reaction(HER)catalytic electrodes under actual working conditions show interesting mass transfer behaviors at solid(electrode)/liquid(electrolyte)/gas(hydrogen)three-phase interfaces.These behaviors are essential for forming a continuous and effective physical contact region between the electrolyte and the electrode and require further detailed understanding.Here,a case study on 1 T-2 H phase molybdenum disulfide(Mo S_(2))/carbon fiber paper(CFP)catalytic electrodes is performed.Rapid gas-liquid mass transfer at the interface for enhancing the working area stability and capillarity for increasing the electrode working area is found.The real scenario,wherein the energy utilization efficiency of the as-prepared non-noble metal catalytic electrode exceeds that of the noble metal catalytic electrode,is disclosed.Specifically,a fluid dynamics model is developed to investigate the behavior mechanism of hydrogen bubbles from generation to desorption on the catalytic electrode surface with different hydrophilic and hydrophobic properties.These new insights and theoretical evidence on the non-negligible three-phase interface behaviors will identify opportunities and motivate future research in high-efficiency,stability,and low-cost HER catalytic electrode development. 展开更多
关键词 Hydrogen evolution reaction three-phase interface behavior Catalytic electrode Fluid dynamics 1T-2H MoS_(2)
原文传递
Modeling of Three-Phase Flow and Interface Deformation of Metal/Bath in Aluminum Reduction Cell With Cathode Protrusion
3
作者 WANG Qiang WANG Fang +1 位作者 LI Bao-kuan FENG Nai-xiang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2012年第S1期59-62,共4页
Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed t... Stabilizing the interface wave of the molten aluminum(metal)-electrolyte(bath)is beneficial to shorten the anode-cathode distance(ACD)which is critical to the energy saving.A coupled mathematical model was developed to study the impact of the novel cathode protrusion on the molten fluid motion as well as the metal-bath interface deformation.The molten fluid motion in the aluminum reduction ceils is under the combined effect of the electro-magnetic forces(EMFs)and the gas bubbles generated at the anode.A transient inhomogeneous three-phase model(metal-bath-gas bubble)was established in order to calculate more accurate.The results indicate that the metal-bath interface deformation can be reduced significantly by the novel cathode protrusion which is beneficial to the electric energy saving.Besides,The EMFs decreases as a result of the optimizing of the magnetic field due to the novel cathode convex which is an important driving force for the deformation of the interface.In addition,large vortex in the metal flow field is break up into the small vortex by the cathode protrusion and then dissipated due to the viscous force and the hindering effect of the cathode protrusion.The quantity of the vortex as well as the strength of the vortex reduces significantly in the reduction cell with novel cathode protrusion. 展开更多
关键词 aluminum reduction cell novel cathode protrusion inhomogeneous three-phase flow interface deformation electro-magnetic forces VORTEX
原文传递
Comprehensive understanding and rational regulation of microenvironment for gas-involving electrochemical reactions 被引量:1
4
作者 Qiyang Cheng Mengfan Wang +6 位作者 Jiajie Ni Lifang Zhang Yu Cheng Xi Zhou Yufeng Cao Tao Qian Chenglin Yan 《Carbon Energy》 SCIE CSCD 2023年第7期70-99,共30页
Substantial progress has been made in the understanding of gas-involving electrochemical reactions recently for the sake of clean,renewable,and efficient energy technologies.However,the specific influence mechanism of... Substantial progress has been made in the understanding of gas-involving electrochemical reactions recently for the sake of clean,renewable,and efficient energy technologies.However,the specific influence mechanism of the microenvironment at the reaction interface on the electrocatalytic performance(activity,selectivity,and durability)remains unclear.Here,we provide a comprehensive understanding of the interfacial microenvironment of gas-involving electrocatalysis,including carbon dioxide reduction reaction and nitrogen reduction reaction,and classify the factors affecting the reaction thermodynamics and kinetics into gas diffusion,proton supply,and electron transfer.This categorization allows a systematic survey of the literature focusing on electrolyzer-level(optimization of the device,control of the experimental condition,and design of the working electrode),electrolytelevel(increase of gas solubility,regulation of proton supply,and substitution of anodic reaction),and electrocatalyst-level strategies(promotion of gas affinity,adjustment of hydrophobicity,and enhancement of conductivity),aiming to retrieve the correlations between the microenvironment and electrochemical performance.Finally,priorities for future studies are suggested to support the comprehensive improvement of next-generation gas-involving electrochemical reactions. 展开更多
关键词 CO_(2)RR ELECTROCATALYSIS MICROENVIRONMENT NRR three-phase interface
下载PDF
Experimental study of the mechanism of nanofluid in enhancing the oil recovery in low permeability reservoirs using microfluidics
5
作者 Kang Wang Qing You +2 位作者 Qiu-Ming Long Biao Zhou Pan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期382-395,共14页
Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential... Due to the low porosity and low permeability in unconventional reservoirs,a large amount of crude oil is trapped in micro-to nano-sized pores and throats,which leads to low oil recovery.Nanofluids have great potential to enhance oil recovery(EOR)in low permeability reservoirs.In this work,the regulating ability of a nanofluid at the oil/water/solid three-phase interface was explored.The results indicated that the nanofluid reduced the oil/water interfacial tension by two orders of magnitude,and the expansion modulus of oil/water interface was increased by 77% at equilibrium.In addition,the solid surface roughness was reduced by 50%,and the three-phase contact angle dropped from 135(oil-wet)to 48(water-wet).Combining the displacement experiments using a 2.5D reservoir micromodel and a microchannel model,the remaining oil mobilization and migration processes in micro-to nano-scale pores and throats were visualized.It was found that the nanofluid dispersed the remaining oil into small oil droplets and displaced them via multiple mechanisms in porous media.Moreover,the high strength interface film formed by the nanofluid inhibited the coalescence of oil droplets and improved the flowing ability.These results help to understand the EOR mechanisms of nanofluids in low permeability reservoirs from a visual perspective. 展开更多
关键词 NANOFLUID EOR mechanism MICROMODEL Low permeability three-phase interface
下载PDF
Interface engineering of plasmonic induced Fe/N/C-F catalyst with enhanced oxygen catalysis performance for fuel cells application 被引量:1
6
作者 Xue Yin Ligang Feng +6 位作者 Wen Yang Yuanxi Zhang Haiyan Wu Le Yang Lei Zhou Lin Gan Shaorui Sun 《Nano Research》 SCIE EI CSCD 2022年第3期2138-2146,共9页
The low intrinsic activity of Fe/N/C oxygen catalysts restricts their commercial application in the fuel cells technique;herein,we demonstrated the interface engineering of plasmonic induced Fe/N/C-F catalyst with pri... The low intrinsic activity of Fe/N/C oxygen catalysts restricts their commercial application in the fuel cells technique;herein,we demonstrated the interface engineering of plasmonic induced Fe/N/C-F catalyst with primarily enhanced oxygen reduction performance for fuel cells applications.The strong interaction between F and Fe-N4 active sites modifies the catalyst interfacial properties as revealed by X-ray absorption structure spectrum and density functional theory calculations,which changes the electronic structure of Fe-N active site resulting from more atoms around the active site participating in the reaction as well as super-hydrophobicity from C–F covalent bond.The hybrid contribution from active sites and carbon support is proposed to optimize the three-phase microenvironment efficiently in the catalysis electrode,thereby facilitating efficient oxygen reduction performance.High catalytic performance for oxygen reduction and fuel cells practical application catalyzed by Fe/N/C-F catalyst is thus verified,which offers a novel catalyst system for fuel cells technique. 展开更多
关键词 interface engineering Fe/N/C catalyst CF_(4)plasma treatment three-phase microenvironment proton exchange membrane fuel cells
原文传递
Advances in bio-inspired electrocatalysts for clean energy future 被引量:1
7
作者 Jing-Wen Duan Mu Min-Rui Gao 《Nano Research》 SCIE EI CSCD 2024年第2期515-533,共19页
Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality.The unique structure and function of organisms can offer many ideas for the design of elect... Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality.The unique structure and function of organisms can offer many ideas for the design of electrocatalysts,which has become one of the most promising research directions.Recently,the understanding of the mechanism of bio-inspired electrocatalysis has become clearer,which has promoted the design of bio-inspired catalysts and catalytic systems.Various bio-inspired catalysts(enzyme-like catalysts,layered porous catalysts,superhydrophobic/superhydrophilic surfaces,and so on)have been developed to enable efficient electrocatalytic reactions.Herein,we discuss the key advances in the field of bio-inspired electrocatalysts progressed in recent years.First,the role of bio-inspiration in increasing the intrinsic activity and number of active sites of catalysts is introduced.Then,the structure and mechanism of layered porous catalytic systems that mimic biological transport systems are comprehensively discussed.Subsequently,the design of three-phase interfaces from micro-nanoscale to atomic scale is highlighted,including the wettability of the electrode surface and the transport system near the electrode.We conclude the review by identifying challenges in bio-inspired electrocatalysts and providing insights into future prospects for the exciting research field. 展开更多
关键词 bio-inspired electrocatalysts active sites layered porous structure three-phase interface
原文传递
Porous fixed-bed photoreactor for boosting C-C coupling in photocatalytic CO_(2)reduction 被引量:2
8
作者 Shengjie Bai Haoran Qiu +3 位作者 Mengmeng Song Guiwei He Feng Wang Liejin Guo 《eScience》 2022年第4期428-437,共10页
Solar-driven CO_(2)conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer.Here,a regulatable three-phase interface on a porous fixed-bed is constructed f... Solar-driven CO_(2)conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer.Here,a regulatable three-phase interface on a porous fixed-bed is constructed for efficient C-C coupling in photocatalytic CO_(2)reduction.The photocatalytic results show that∼90%selectivity towards C^(2+)products is obtained by a Cu/Cd_(0.5)Zn_(0.5)S photocatalyst,with a yield of 6.54μmol/h(an irradiation area of 0.785 cm^(2)),while only 0.94μmol/h(an irradiation area of 19.625 cm^(2))is achieved with a commonly used suspension photocatalytic reactor.We find that under the same CO_(2)feed rate,the local CO_(2)concentration in this porous fixed-bed photoreactor is obviously higher than in the suspension photoreactor.The larger local CO_(2)coverage derived from a higher CO_(2)supply and aggregation enhances the C-C coupling,thereby generating more C^(2+).Even an observable three-phase interface on the porous fixed-bed can be regulated by adjusting the CO_(2)supply,for which the optimal gas inlet rate is 5-10 sccm. 展开更多
关键词 Photocatalytic CO_(2)reduction Cu/Cd_(0.5)Zn_(0.5)S Porous fixed-bed three-phase interface C^(2+)chemical fuel
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部