Development of high-performance solid state luminescent carbon-based nanomaterials remains challenging.Here,strong blue-green fluorescent carbonized polymer dots(CPDs)from o-aminobenzenethiol and thiosalicylic acid(o ...Development of high-performance solid state luminescent carbon-based nanomaterials remains challenging.Here,strong blue-green fluorescent carbonized polymer dots(CPDs)from o-aminobenzenethiol and thiosalicylic acid(o ABT-TSA-CPDs)with an absolute photoluminescence quantum yield(PLQY)of 76%in solid state without matrix were synthesized.Through adjusting the reaction temperature and time,the PL centers were proved to be carbon core state and surface state associated to carbonyl group which was the source of strong fluorescence emission in solid state.The mechanism of the unique phenomenon of enhanced emission from ethanol solution(PLQY=7%)to powder(PLQY=76%)was investigated by analyzing the chemical properties and structures of o ABT-TSA-CPDs at different temperatures and o ABT-TSACPDs/PVC composites,and was confirmed as fixation of PL centers.展开更多
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ...Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues...Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.展开更多
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ...Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.展开更多
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ...Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.展开更多
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in...The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction ...Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)co...Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.展开更多
Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric press...Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.展开更多
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder...The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.展开更多
Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion ba...Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.展开更多
Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chro...Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.展开更多
Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combin...Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design.展开更多
Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prosp...Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.展开更多
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility wit...Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.展开更多
Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affect...Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.展开更多
All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to th...All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.展开更多
基金supported financially by the National Science Foundation of China(Nos.22035001,21774041)Jilin University Science and Technology Innovative Research Team(No.2017TD-06)。
文摘Development of high-performance solid state luminescent carbon-based nanomaterials remains challenging.Here,strong blue-green fluorescent carbonized polymer dots(CPDs)from o-aminobenzenethiol and thiosalicylic acid(o ABT-TSA-CPDs)with an absolute photoluminescence quantum yield(PLQY)of 76%in solid state without matrix were synthesized.Through adjusting the reaction temperature and time,the PL centers were proved to be carbon core state and surface state associated to carbonyl group which was the source of strong fluorescence emission in solid state.The mechanism of the unique phenomenon of enhanced emission from ethanol solution(PLQY=7%)to powder(PLQY=76%)was investigated by analyzing the chemical properties and structures of o ABT-TSA-CPDs at different temperatures and o ABT-TSACPDs/PVC composites,and was confirmed as fixation of PL centers.
基金funded by the Ministry of Science and ICT through the National Research Foundation of Korea(202300262366)the Basic Research Lab(RS-2023-00219710)the Ministry of Commerce,Industry,and Energy(20025720)of Korea.
文摘Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金Special Fund for Carbon Peak and Carbon Neutralization Scientific and Technological Innovation Project of Jiangsu Province,Grant/Award Number:BE2022042National Natural Science Foundation of China,Grant/Award Numbers:22201275,51873086,51673096,51873086,51673096+2 种基金the Project on the Enterprises-Universities-Research Cooperation of Kucap Smart Technology(Nanjing)Co.,Ltd.,Grant/Award Number:202240607Postgraduate Research&Practice Innovation Program of Jiangsu Province,Grant/Award Number:KYCX23-1407Anhui Provincial Natural Science Foundation,Grant/Award Number:2208085QB32。
文摘Solid-state supercapacitors(SSCs)are emerging as one of the promising energy storage devices due to their high safety,superior power density,and excellent cycling life.However,performance degradation and safety issues under extreme conditions are the main challenges for the practical application.With the expansion of human activities,such as space missions,polar exploration,and so on,the investigation of SSC with wide temperature tolerance,high energy density,power density,and sustainability is highly desired.In this review,the effects of temperature on SSC are systematically illustrated and clarified,including the properties of the electrolyte,ion diffusion,and reaction dynamics of the supercapacitor.Subsequently,we summarize the recent advances in wide-temperature-range SSCs from the aspect of electrolyte modification,electrode design,and interface adjustment between electrode and electrolyte,especially with critical concerns on ionic conductivity and cycling stability.In the end,a perspective is presented,expecting to promote the practical application of the SSC in harsh conditions.
基金supported by the CAS Project of Young Scientists in Basic Research(YSBR-058)the National Natural Science Foundation of China(22279135)+2 种基金the Outstanding Youth Foundation of Liaoning Province(2023JH3/10200019)the Dalian Science and Technology Innovation Fund(2023JJ11CG004)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(YIICE E411010316)。
文摘Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.
基金the National Natural Science Foundation of China(22178120)the China Postdoctoral Science Foundation(2022TQ0173,2023M731922,2022M720076,BX20220182,2023M731921,2023M731919,2023M741919).
文摘Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs.
基金the funding support from the National Natural Science Foundation of China(22222902,22209062)the Natural Science Foundation of Jiangsu Province(BK20200047)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB150004)the Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China(JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program(202310320066Z)。
文摘The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金the support from the National Natural Science Foundation of China(Grant No.22179006)supported by the Beijing Natural Science Foundation(2244101)+1 种基金the National Natural Science Foundation of China(Grant No.52072036)the SINOPEC project(223128)。
文摘Solid polymer electrolytes(SPEs)are urgently required to achieve practical solid-state lithium metal batteries(LMBs)and lithium-ion batteries(LIBs),Herein,we proposed a mechanism for modulating interfacial conduction and anode interfaces in high-concentration SPEs by LiDFBOP.Optimized electrolyte exhibits superior ionic conductivity and remarkable interface compatibility with salt-rich clusters:(1)polymer-plastic crystal electrolyte(P-PCE,TPU-SN matrix)dissociates ion pairs to facilitate Li+transport in the electrolyte and regulates Li^(+)diffusion in the SEI.The crosslinking structure of the matrix compensates for the loss of mechanical strength at high-salt concentrations;(2)dual-anion TFSI^(-)_(n)-DFBOP^(-)_(m)in the Li^(+)solvation sheath facilitates facile Li^(+)desolvation and formation of salt-rich clusters and is conducive to the formation of Li conductive segments of TPU-SN matrix;(3)theoretical calculations indicate that the decomposition products of LiDFBOP form SEI with lower binding energy with LiF in the SN system,thereby enhancing the interfacial electrochemical redox kinetics of SPE and creating a solid interface SEI layer rich in LiF.As a result,the optimized electrolyte exhibits an excellent ionic conductivity of9.31×10^(-4)S cm^(-1)at 30℃and a broadened electrochemical stability up to 4.73 V.The designed electrolyte effectively prevents the formation of Li dendrites in Li symmetric cells for over 6500 h at0.1 mA cm^(-2).The specific Li-Si alloy-solid state half-cell capacity shows 711.6 mAh g^(-1)after 60 cycles at 0.3 A g^(-1).Excellent rate performance and cycling stability are achieved for these solid-state batteries with Li-Si alloy anodes and NCM 811 cathodes.NCM 811‖Prelithiated silicon-based anode solid-state cell delivers a discharge capacity of 195.55 mAh g^(-1)and a capacity retention of 97.8%after 120 cycles.NCM 811‖Li solid-state cell also delivers capacity retention of 84.2%after 450 cycles.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金financially supported by National Natural Science Foundation of China(21701083)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_3137)。
文摘Solid polymer composite electrolytes possess the benefits of superior compatibility with electrodes and good thermal characteristics for more secure energy storage equipment.Herein,a new gel polymer electrolyte(GPE)containing NH_(2)-MIL-53(Al),[PP_(13)][TFSI],LiTFSI,and PVDF-HFP was prepared using a simple method of solution casting.The effects of encapsulating different ratios of ionic liquid([PP_(13)][TFSI])into the micropores of functionalized metal-organic frameworks(NH_(2)-MIL-53(Al))on the electrochemical properties were compared.XRD,SEM,nitrogen adsorption-desorption isotherms,and electrochemical measurements were conducted.This GPE demonstrates a superior ionic conductivity of 8.08×10^(-4)S·cm^(-1)at 60℃and can sustain a discharge specific capacity of 156.6 mA·h·g^(-1)at 0.2 C for over 100 cycles.This work might offer a potential approach to alleviate the solid-solid contact with the solid-state electrolyte and electrodes and broaden a new window for the creation of all-solid-state batteries.
基金support by a JSPS KAKENHI,Grant-in-Aid for Scientific Research(C),Grant Number JP19K05609.
文摘Silkworms and spiders are capable of generating fibers that are both highly durable and elastic in a short span of time,using a silk solution stored within their bodies at room temperature and normal atmospheric pressure.The dragline silk fiber,which is essentially a spider's lifeline,surpasses the strength of a steel wire of equivalent thickness.Regrettably,humans have yet to replicate this process to produce fibers with similar high strength and elasticity in an eco-friendly manner.Therefore,it is of utmost importance to thoroughly comprehend the extraordinary structure and fibrillation mechanism of silk,and leverage this understanding in the manufacturing of high-strength,high-elasticity fibers.This review will delve into the recent progress in comprehending the structure of silks derived from silkworms and spiders,emphasizing the distinctive attributes of solidstate NMR.
基金This work was supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920).The authors acknowledge the Microscopy and Microanalysis Facility—John de Laeter Centre,Curtin University for the scientific and technical assistance of material characterizations.L.Zhao and C.Cao would like to acknowledge the PhD scholarship supported by BLACKSTONE Minerals Ltd.
文摘The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
基金funded by The Central Government Guides Local Science and Technology Development Special Fund Projects(Grant No.YDZJSX2022B003)the Shanxi Province Science and Technology Major Projects(Grant No.202101120401008)。
文摘Garnet solid electrolytes are one of the most promising electrolytes for solid-state batteries.However,Li_(2)CO_(3) is a critical issue that hinders the practical application of garnet-based solid-state lithium-ion batteries.There are two sources of Li_(2)CO_(3) contamination.The main one is the aging of garnet electrolytes in the atmosphere.Garnet electrolytes can react with H_(2)O and CO_(2) in the air to form Li_(2)CO_(3),which reduces ion conductivity,increases electrode/garnet electrolyte interface resistance,and deteriorates the electrochemical performance of the battery.Various strategies,such as elemental doping,grain boundary manipulation,and interface engineering,have been suggested to address these issues.The other is the passivation layer(Li_(2)CO_(3),Li_3N,LiOH,Li_(2)O) formed on the surface of the lithium foil after long-term storage,which is ignored by most researchers.To better understand the current strategies and future trends to address the Li_(2)CO_(3) problem,this perspective provides a systematic review of journals published in this field from 2020-2023.
基金supported in part by JSPS KAKENHI Grant Numbers in Japan(JP21H05229 to I.K.)JST CREST(JPMJCR21B2)The authors also thank Nobuko Yamaguchi for the financial support.
文摘Rhodopsin is a seven-helical transmembrane protein with a retinal chromophore covalently bound to a conserved lysine in helix G via a retinal protonated Schiff base(RPSB).Microbial rhodopsins absorb light through chromophore and play a fundamental role in optogenetics.Numerous microbial rhodopsins have been discovered,contributing to diverse functions and colors.Solid-state NMR spectroscopy has been instrumental in elucidating the conformation of chromophores and the three-dimensional structure of microbial rhodopsins.This review focuses on the 15N chemical shift values of RPSB and summarizes recent progress in the field.We displayed the correlation between the 15N isotropic chemical shift values of RPSB and the maximum absorption wavelength of rhodopsin using solid-state NMR spectroscopy.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.19DZ2270100),China。
文摘Composite solid-state electrolytes represent a critical pathway that balances the interface compatibility and lithium-ion conductivity in all-solid-state batteries.The quest for stable and highly ion-conductive combinations between polymers and fillers is vital,but blind attempts are often made due to a lack of understanding of the mechanisms involved in the interaction between polymers and fillers.Herein,we employ in-situ polymerization to prepare a polymer based on an ether-nitrile copolymer with high cathode stability as the foundation and discuss the performance enhancement mechanisms of argyrodite and nano-alumina.With 1%content of sulfide interacting with the polymer at the two-phase interface,the local enhancement of lithium-ion migration capability can be achieved,avoiding the reduction in capacity due to the low ion conductivity of the passivation layer during cycling.The capacity retention after 50cycles at 0.5 C increases from 83.5%to 94.4%.Nano-alumina,through anchoring the anions and interface inhibition functions,eventually poses an initial discharge capacity of 136.8 m A h g^(-1)at 0.5 C and extends the cycling time to 1000 h without short-circuiting in lithium metal batteries.Through the combined action of dual fillers on the composite solid-state electrolyte,promising insights are provided for future material design.
基金supported by the Natural Science Foundation of China(61901142)the Key Research and Development Project of Hainan Province(ZDYF2022SHFZ093).
文摘Traditional garnet solid electrolyte(Li_(7)La_(3)Zr_(2)O_(12))suffers from low room temperature ionic conductivity,poor air stability,high sintering temperature and energy consumption.Considering the development prospects of high-entropy materials with high structural disorder and strong component controllability in the field of electrochemical energy storage,herein,a novel high-entropy garnet-type oxide solid electrolyte,Li_(5.75)Ga_(0.25)La_(3)Zr_(0.5)Ti_(0.5)Sn_(0.5)Nb_(0.5)O_(12)(LGLZTSNO)was constructed by partially replacing the Li and Zr sites in Li_(7)La_(3)Zr_(2)O_(12)with Ga and Ti/Sn/Nb elements,respectively.The experimental and density functional theory(DFT)calculation results show that the high-entropy LGLZTSNO electrolyte has preferable room temperature ion conductivity,air stability,interface contact performance with lithium anode,and the ability to suppress lithium dendrites.Thanks to the improvement of electrolyte performance,the critical current density of Li/Ag@LGLZTSNO/Li symmetric cell was increased from 0.42 to 1.57 mA cm^(−2),and the interface area specific impedance(IASR)was reduced from 765.2 to 42.3Ωcm^(2).Meanwhile,the Li/Ag@LGLZTSNO/LFP full cell also exhibits excellent rate performance and cycling performance(148 mA h g^(−1)at 0.1 C and 124 mA h g^(−1)at 0.5 C,capacity retention up to 84.8%after 100 cycles at 0.1 C),showing the application prospects of high-entropy LGLZTSNO solid electrolyte in high-performance all solid state lithium batteries.
基金supported by the National Natural Science Foundation of China(52003293,51927806,52272258)the Fundamental Research Funds for the Central Universities(2023ZKPYJD07)the Beijing Nova Program(20220484214).
文摘Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for the construction of solid-state lithium batteries due to their excellent flexibility,scalability,and interface compatibility with electrodes.Herein,a novel all-solid polymer electrolyte(PPLCE)was fabricated by the copolymer network of liquid crystalline monomers and poly(ethylene glycol)dimethacrylate(PEGDMA)acts as a structural frame,combined with poly(ethylene glycol)diglycidyl ether short chain interspersed serving as mobile ion transport entities.The preparaed PPLCEs exhibit excellent mechanical property and out-standing electrochemical performances,which is attributed to their unique three-dimensional cocontinuous structure,characterized by a cross-linked semi-interpenetrating network and an ionic liquid phase,resulting in a distinctive nanostructure with short-range order and long-range disorder.Remarkably,the addition of PEGDMA is proved to be critical to the comprehensive performance of the PPLCEs,which effectively modulates the microscopic morphology of polymer networks and improves the mechanical properties as well as cycling stability of the solid electrolyte.When used in a lithiumion symmetrical battery configuration,the 6 wt%-PPLCE exhibites super stability,sustaining operation for over 2000 h at 30 C,with minimal and consistent overpotential of 50 mV.The resulting Li|PPLCE|LFP solid-state battery demonstrates high discharge specific capacities of 160.9 and 120.1 mA h g^(-1)at current densities of 0.2 and 1 C,respectively.Even after more than 300 cycles at a current density of 0.2 C,it retaines an impressive 73.5%capacity.Moreover,it displayes stable cycling for over 180 cycles at a high current density of 0.5C.The super cycle stability may promote the application for ultralong-life all solid-state lithium metal batteries.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Natural Science Foundation of Hebei Province(B2021208061,B2022208006,B2023208014)the Beijing Natural Science Foundation(Z200011).
文摘Gel-based polymer electrolytes are limited by the polarity of the residual solvent,which restricts the coupling-breaking behaviour during Li^(+)conduction,resulting in the Li^(+)transport kinetics being greatly affected.Here,we designed anion competitive gel polymer electrolyte(ACPE)by introducing lithium difluoro(oxalato)borate(LiDFOB)anion into the 1,3-dioxolane(DOL)in situ polymerisation system.ACPE enhances the ionic dipole interaction between Li^(+)and the solvent molecules and synergizes with Li^(+)across the solvation site of the polymer ethylene oxide(EO)unit,combination that greatly improves the Li^(+)transport efficiency.As a result,ACPE exhibits 1.12 mS cm^(−1)ionic conductivity and 0.75 Li^(+)transfer number at room temperature.Additionally,this intra-polymer solvation sheath allows preferential desolvation of DFOB−,which contributes to the formation of kinetically stable anion-derived interphase and effectively mitigates side reactions.Our results demonstrate that the assembled Li||NCM622 solid-state battery exhibits lifespan of over 300 cycles with average Coulombic efficiency of 98.8%and capacity retention of 80.3%.This study introduces a novel approach for ion migration and interface design,paving the way for high-safety and high-energy-density batteries.
基金supported by the National Natural Science Foundation of China(No.U19A2018)the China National University Student Innovation and Entrepreneurship Training Program(S202310530059)。
文摘All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.