Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr...Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.展开更多
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru...To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.展开更多
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru...The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential mod...The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.展开更多
A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) mo...A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 10^13 K·s^-1 and 1.0 × 10^12 K·s^-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively.展开更多
In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compa...In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compared with experiment using 10-Kg ingot of MlNi3.55Al0.3Mn0.4CO0.75 (Ml: Lanthanum-rich Mischmetal) hydrogen stor- age alloy cast in a mould, which agrees with the experiment well. Finally, in order to obtain the expected as-cast microstructure distribution of 15-Kg ingot of MlNi3.55Al0.3Mn0.4Co0.75 alloy, the size of Cu mould is optimized using the model described. The optimized mould is then made and the alloy is cast in it, the expected as-cast microstructure distribution is obtained.展开更多
Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the...Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of ma- terial coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic prop- erties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crys- tals and films with increased complexity. In this topical re- view, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some ex- amples of specific microstructures will also be presented.展开更多
For the first time, a molecular dynamics simulation study of 50000 atoms has been performed for the transition mechanisms of the microstructure configurations of liquid metal Al during forming processes of amorphous s...For the first time, a molecular dynamics simulation study of 50000 atoms has been performed for the transition mechanisms of the microstructure configurations of liquid metal Al during forming processes of amorphous state by rapid cooling. Not only have various bond types been researched, but also icosahedra, defective icosahedra and Frank Kasper polyhedra cluster structures were discussed. A very clear picture of how the metal atoms gather to form clusters and how the clusters evolve further has been obtained. Some discussion corresponding to the microscopic mechanisms of the simulation results was also given. These will give an important enlightenment to understand the forming mechanisms and their microscopic processes of amorphous structures. [展开更多
The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a...The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a process by means of computer simulation, not by conventional trial and error method that is time consuming, expensive and does not always lead to optimum results. Models for microstructural simulation and prediction were set up according to the evolution of microstructure during hot forming and cooling processes. The expanding extrusion complex hot forming and cooling processes, as an example, were simulated.展开更多
The solidification microstructure of Al-Si alloy was observed in the experiment,the second dendrite arm spacing(SDAS)was measured,and the effect of temperature on the microstructure was analyzed.Phase-field(PF)model i...The solidification microstructure of Al-Si alloy was observed in the experiment,the second dendrite arm spacing(SDAS)was measured,and the effect of temperature on the microstructure was analyzed.Phase-field(PF)model incorporating natural convection caused by gravity was employed to simulate the microstructure evolution of Al-Si alloy under the experimental conditions.Good agreements between the experimental and simulation results verified the reliability of the simulation approach proposed in this study.Based on the proposed model,a series of simulation cases(2D and 3D)were performed to investigate the evolution of columnar and equiaxed dendritic structures.It was found that the solute content of the alloy had little impact on the microstructure evolution,while the solute expansion coefficient had obvious effect on the dendrite tip velocities.Significant improvement of computational efficiency was achieved via novel algorithms,making it possible to perform massive simulation for studying the evolution of solidification microstructures,which is hard to be directly observed in experiments via synchrotron radiation for Al-Si alloy.展开更多
Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visual...Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.展开更多
Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phe...Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phenomena of heat and mass transfer and microstructure evolution.It is hard to directly observe the dynamic behavior and microstructure evolution of molten pool during additive manufacturing.Therefore,numerical simulation of additive manufacturing process is significant since it can efficiently and pertinently predict and analyze the physical phenomena in the process of metal additive manufacturing,and provide a reference for technological parameters selection.In this review,the research progress of numerical simulation of metal additive manufacturing is discussed.Various aspects of numerical simulation models are reviewed,including:(1)Introduction of basic control method and physical description of numerical simulation models;(2)Comparison of various heat and mass transfer models based on different physical assumptions(heat conduction model;heat flux coupling model;discrete powder particle heat flux coupling model);(3)Applications of various microstructure evolution models[phase field(PF),cellular automata(CA),and Monte Carlo(MC)].Finally,the development trend of numerical simulation of metal additive manufacturing,including the thermal-flow-solid coupling model and deep learning for numerical model,is analyzed.展开更多
Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on th...Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on them. The elements and substrates that really play a role for nucleation are yet unknown. Until now there is very little knowledge about the fundamentals of nucleation, such as composition and morphology of nuclei. In this work we utilized EN-GJL-200 as a base material and examined several produced specimens. The specimens were cast with and without inoculants and quenched at different solidification states. Specimens were also examined with a high and low oxygen concentration, but the results showed that different oxygen contents have no influence on the nucleation in cast iron melts. Our research was focused on the microscopic examination and phase-field simulations. For studying the samples we applied different analytical methods, where SEM-EDS, -WDS were proved to be most effective. The simulations were conducted by using the software MICRESS, which is based on a multiphase-field model and has been coupled directly to the TCFE3 thermodynamic database from TCAB. On the basis of the experimental investigations a nucleation mechanism is proposed, which claims MnS precipitates as the preferred site for graphite nucleation. This theory is supported by the results of the phase-field simulations.展开更多
In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both ...In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both liquid and solid, solid/liquid interface solute conservation, interface curvature and the growth anisotropy were considered in the model. The model was applied to simulate the dendrite growth and Nb microsegregation behavior of U-5.5 Nb alloy during solidification, and the predicted results showed a reasonable agreement with the experimental results. The effects of cooling rates on the solidification microstructure and composition distribution of U-5.5 Nb were investigated by using the developed model. The results show that with the increase of the cooling rate, the average grain size decreases and the Nb microsegregation increases.展开更多
The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVED...The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVEDI(KGT) growth model were used in the calculation. FDM(Finite Difference Method) combined with relative motion was used,and dynamic evolution of microstructures in the process of aluminum twin-roll casting was achieved. Visual Fortran programming language was adopted to calculate and realize the image post-processing. Moreover,the effect of different casting process parameters on the formation of the microstructures was simulated. The results are helpful to explaining the dendritic segregation and size segregation as well as shrinkage-porosity defects. Columnar grains mainly distribute near the casting roller while equiaxed grains distributed far away from the casting roller.展开更多
It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel ...It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel was simulated in solidification processes and the simulation results are consistent with the experimental ones. In addition, the effects of Gaussian distribution parameters were also studied. The simulation results show that the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the less the number of minimum grains is. However, the uniformity degree decreases first, and then increases gradually.展开更多
Phase-field method can be used to describe the complicated morphologies of dendrite growth without explicitly tracking the complex phase boundaries. The influences of initial temperature and initial concentration on d...Phase-field method can be used to describe the complicated morphologies of dendrite growth without explicitly tracking the complex phase boundaries. The influences of initial temperature and initial concentration on dendrite growth are investigated by using the phase-field model coupling concentration field equations. The calculated results indicate that the supersaturation, which is larger in lower initial temperature and lower concentration under isothermal condition, plays a very important role in microsegregation. It is found that the larger supersaturation causes higher degree microsegregation and faster dendrite growth, and the more serious side-branchs occur. The simulated results agree well with the solidification theory.展开更多
Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this p...Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.展开更多
A cellular automaton model of heat transfer and structural development in quenching steels has been developed and programmed for a three-dimensional computer simulation. A previous study has validated the simulation ...A cellular automaton model of heat transfer and structural development in quenching steels has been developed and programmed for a three-dimensional computer simulation. A previous study has validated the simulation method by agreements of simulated cooling curves and hardenability with reported experimental data. In present work, a series of simulated quenching experiments for steel 1080 and 4140 steel have been carried out. With five adjustable parameters, a large variety of cooling conditions has been created and applied to the simulated quenching. Effect of delayed quenching and the associated phenomenon of inverse hardening have been addressed with emphasis.展开更多
文摘Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend.
基金Funded by the National Natural Science Foundation of China (Nos. 52278269, 52278268, 52178264, 52108238)Tianjin Outstanding Young Scholars Science Fund Project (No. 22JCJQJC00020)State Key Laboratory of Green Building Materials Open Foundation (No. 2021GBM08)。
文摘To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater.
基金Projects(50831003,51071065,51101022,51102090) supported by the National Natural Science Foundation of China
文摘The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
文摘The Brownian dynamics (BD) simulation of a dilute surfactant solution is conducted in a steady shear flow. The rodlike micelle is assumed as a rigid rod composed of lined-up beads. A novel intercluster potential model is introduced for describing the interactions between, micelles. In the model, the Lennard-Jones and the soft-sphere potentials are used as inter-bead potentials for end-end and interior-interior beads, respectively. The micelles are combined at their ends to form a network structure at lower shear rates and are disconnected to become more and more parallel to the shear flow direction with increasing shear rate. The change of micellar microstructures with the variation of the shear rate results in shear thinning characteristics of the computed shear viscosities and first normal stress difference coefficients. The effects of surfactant solution concentration on the micellar structures and rheological properties are also investigated. Results show that the shear viscosities and the first normal stress difference coefficients increase with increasing the viscosity of the surfactant solution.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50271026 and 50571037).
文摘A molecular dynamics simulation study has been performed for the microstructure evolution in a liquid metal Ni system during crystallization process at two cooling rates by adopting the embedded atom method (EAM) model potential. The bond-type index method of Honeycutt-Andersen (HA) and a new cluster-type index method (CTIM-2) have been used to detect and analyse the microstructures in this system. It is demonstrated that the cooling rate plays a critical role in the microstructure evolution: below the crystallization temperature Tc, the effects of cooling rate are very remarkable and can be fully displayed. At different cooling rates of 2.0 × 10^13 K·s^-1 and 1.0 × 10^12 K·s^-1, two different kinds of crystal structures are obtained in the system. The first one is the coexistence of the hcp (expressed by (12 0 0 0 6 6) in CTIM-2) and the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 and 1422 bond-types, and the hcp basic cluster becomes the dominant one with decreasing temperature, the second one is mainly the fcc (12 0 0 0 12 0) basic clusters consisting of 1421 bond-type, and their crystallization temperatures Tc would be 1073 and 1173 K, respectively.
文摘In this paper,a simulation model for the temperature field in the solidification process and microstructure distribution is presented. Then, the result of simulation for the final microstructure distribution is compared with experiment using 10-Kg ingot of MlNi3.55Al0.3Mn0.4CO0.75 (Ml: Lanthanum-rich Mischmetal) hydrogen stor- age alloy cast in a mould, which agrees with the experiment well. Finally, in order to obtain the expected as-cast microstructure distribution of 15-Kg ingot of MlNi3.55Al0.3Mn0.4Co0.75 alloy, the size of Cu mould is optimized using the model described. The optimized mould is then made and the alloy is cast in it, the expected as-cast microstructure distribution is obtained.
基金supported by the NSF (DMR-1006194 and CMMI1100339)NSFC (10972189 and 11102175)NSC(100-2628-E-002-034-MY3)
文摘Transforming materials with evolving microstructures is one of the most important classes of smart materials that have many potential technological applications, and an unconventional phase field approach based on the characteristic functions of transforming variants has been developed to simulate the formation and evolution of their microstructures. This approach is advantageous in its explicit material symmetry and energy well structure, minimal number of ma- terial coefficients, and easiness in coupling multiple physical processes and order parameters, and has been applied successfully to study the microstructures and macroscopic prop- erties of shape memory alloys, ferroelectrics, ferromagnetic shape memory alloys, and multiferroic magnetoelectric crys- tals and films with increased complexity. In this topical re- view, the formulation of this unconventional phase field approach will be introduced in details, and its applications to various transforming materials will be discussed. Some ex- amples of specific microstructures will also be presented.
文摘For the first time, a molecular dynamics simulation study of 50000 atoms has been performed for the transition mechanisms of the microstructure configurations of liquid metal Al during forming processes of amorphous state by rapid cooling. Not only have various bond types been researched, but also icosahedra, defective icosahedra and Frank Kasper polyhedra cluster structures were discussed. A very clear picture of how the metal atoms gather to form clusters and how the clusters evolve further has been obtained. Some discussion corresponding to the microscopic mechanisms of the simulation results was also given. These will give an important enlightenment to understand the forming mechanisms and their microscopic processes of amorphous structures. [
文摘The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a process by means of computer simulation, not by conventional trial and error method that is time consuming, expensive and does not always lead to optimum results. Models for microstructural simulation and prediction were set up according to the evolution of microstructure during hot forming and cooling processes. The expanding extrusion complex hot forming and cooling processes, as an example, were simulated.
基金financial supports from the National Key R&D Program of China(No.2016YFB0701201)the Fostering Project in Innovation Funds of China Academy of Engineering Physics(No.PY2019078)financial support from China Scholarship Council。
文摘The solidification microstructure of Al-Si alloy was observed in the experiment,the second dendrite arm spacing(SDAS)was measured,and the effect of temperature on the microstructure was analyzed.Phase-field(PF)model incorporating natural convection caused by gravity was employed to simulate the microstructure evolution of Al-Si alloy under the experimental conditions.Good agreements between the experimental and simulation results verified the reliability of the simulation approach proposed in this study.Based on the proposed model,a series of simulation cases(2D and 3D)were performed to investigate the evolution of columnar and equiaxed dendritic structures.It was found that the solute content of the alloy had little impact on the microstructure evolution,while the solute expansion coefficient had obvious effect on the dendrite tip velocities.Significant improvement of computational efficiency was achieved via novel algorithms,making it possible to perform massive simulation for studying the evolution of solidification microstructures,which is hard to be directly observed in experiments via synchrotron radiation for Al-Si alloy.
基金Funded by National Natural Science Foundation of China(No.50571042)the Natural Science Foundation of Gansu Province of China(Nos.1208RJZA285,1208RJZA121)Lanzhou University of Technology(No.01-0278)
文摘Simulation method was designed to divide Laguerre diagram for right circle group with different weight; out-of-core incremental algorithm for Laguerre diagram was constructed; simulation program development and visualization was done and simulation was realized in user-specified arbitrary area for simulation of metal materials microstructure, which facilitated the practical application and secondary development of Laguerre diagram in the field of material science engineering. Finally, the utilization of a developed software package exemplified the simulation application of microstructure about metal materials and proved its validity.
基金the National Key R&D Program of China(No.2017YFE0123500 and No.2017YFB1103701)。
文摘Metal additive manufacturing technology has been widely used in prototyping,parts manufacturing and repairing.Metal additive manufacturing is a multi-scale and multi-physical coupling process with complex physical phenomena of heat and mass transfer and microstructure evolution.It is hard to directly observe the dynamic behavior and microstructure evolution of molten pool during additive manufacturing.Therefore,numerical simulation of additive manufacturing process is significant since it can efficiently and pertinently predict and analyze the physical phenomena in the process of metal additive manufacturing,and provide a reference for technological parameters selection.In this review,the research progress of numerical simulation of metal additive manufacturing is discussed.Various aspects of numerical simulation models are reviewed,including:(1)Introduction of basic control method and physical description of numerical simulation models;(2)Comparison of various heat and mass transfer models based on different physical assumptions(heat conduction model;heat flux coupling model;discrete powder particle heat flux coupling model);(3)Applications of various microstructure evolution models[phase field(PF),cellular automata(CA),and Monte Carlo(MC)].Finally,the development trend of numerical simulation of metal additive manufacturing,including the thermal-flow-solid coupling model and deep learning for numerical model,is analyzed.
文摘Microstructure strongly influences the mechanical properties of cast iron. By inoculating the melt with proper inoculants, foreign substrates are brought into the melt and eventually the graphite can crystallize on them. The elements and substrates that really play a role for nucleation are yet unknown. Until now there is very little knowledge about the fundamentals of nucleation, such as composition and morphology of nuclei. In this work we utilized EN-GJL-200 as a base material and examined several produced specimens. The specimens were cast with and without inoculants and quenched at different solidification states. Specimens were also examined with a high and low oxygen concentration, but the results showed that different oxygen contents have no influence on the nucleation in cast iron melts. Our research was focused on the microscopic examination and phase-field simulations. For studying the samples we applied different analytical methods, where SEM-EDS, -WDS were proved to be most effective. The simulations were conducted by using the software MICRESS, which is based on a multiphase-field model and has been coupled directly to the TCFE3 thermodynamic database from TCAB. On the basis of the experimental investigations a nucleation mechanism is proposed, which claims MnS precipitates as the preferred site for graphite nucleation. This theory is supported by the results of the phase-field simulations.
基金supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics(Grant No.2015B0203031)the Science Challenge Program(Grant No.TZ20160040201)
文摘In this work, a cellular automaton model has been developed to simulate the microstructure evolution of U-Nb alloy during the solidification process. The preferential growth orientation, solute redistribution in both liquid and solid, solid/liquid interface solute conservation, interface curvature and the growth anisotropy were considered in the model. The model was applied to simulate the dendrite growth and Nb microsegregation behavior of U-5.5 Nb alloy during solidification, and the predicted results showed a reasonable agreement with the experimental results. The effects of cooling rates on the solidification microstructure and composition distribution of U-5.5 Nb were investigated by using the developed model. The results show that with the increase of the cooling rate, the average grain size decreases and the Nb microsegregation increases.
基金Project(50564004) supported by the National Natural Science Foundation of ChinaProject(G2000067208-3) supported by the National Basic Research Program of ChinaProject(0250020) supported by the Natural Science Foundation of Jiangxi Province, China
文摘The microstructures in the solidification process of aluminum twin-roll casting was simulated based on CA(Cellular Automation Method),and the nucleation model based on the normal distribution and KUZR-GIOVANOLS-TRIVEDI(KGT) growth model were used in the calculation. FDM(Finite Difference Method) combined with relative motion was used,and dynamic evolution of microstructures in the process of aluminum twin-roll casting was achieved. Visual Fortran programming language was adopted to calculate and realize the image post-processing. Moreover,the effect of different casting process parameters on the formation of the microstructures was simulated. The results are helpful to explaining the dendritic segregation and size segregation as well as shrinkage-porosity defects. Columnar grains mainly distribute near the casting roller while equiaxed grains distributed far away from the casting roller.
基金supported by the National Natural Science Foundation of China (No.50874007, 50774109)
文摘It was analyzed that the finite element-cellular automaton (CAFE) method was used to simulate 3D-microstructures in solidification processes. Based on this method, the 3D-microstructure of 9SMn28 free-cutting steel was simulated in solidification processes and the simulation results are consistent with the experimental ones. In addition, the effects of Gaussian distribution parameters were also studied. The simulation results show that the higher the mean undercooling, the larger the columnar dendrite zones, and the larger the maximum nucleation density, the smaller the size of grains. The larger the standard deviation, the less the number of minimum grains is. However, the uniformity degree decreases first, and then increases gradually.
文摘Phase-field method can be used to describe the complicated morphologies of dendrite growth without explicitly tracking the complex phase boundaries. The influences of initial temperature and initial concentration on dendrite growth are investigated by using the phase-field model coupling concentration field equations. The calculated results indicate that the supersaturation, which is larger in lower initial temperature and lower concentration under isothermal condition, plays a very important role in microsegregation. It is found that the larger supersaturation causes higher degree microsegregation and faster dendrite growth, and the more serious side-branchs occur. The simulated results agree well with the solidification theory.
文摘Base on a vast amount of testing and calculations for the welding thermal cycling curves of different testing points in fusion welding (TIG welding, gas welding) HAZ of zinc-based alloy with low melting points, this paper defines the welding thermal cycle parameters of microstructure stimulation of HAZ by zinc-based alloy fusion welding process. On the principle of which the microstrnct,are and harkness of the testing points in simulation specimens are basically correspondence with that of actual welding HAZ, the microstructure simulation of testing points Tm=370O℃. 305℃) of ZA12 alloy by fusion welding is carried out by the means of omhic-heating welding thermal simulation tester. The study results of the abrasion-resistance of simulation specimens HAZ by fusion welding process indicates that the abmsion-resistance is closely related to the form of eutectoid microstructure in or in the structure.
文摘A cellular automaton model of heat transfer and structural development in quenching steels has been developed and programmed for a three-dimensional computer simulation. A previous study has validated the simulation method by agreements of simulated cooling curves and hardenability with reported experimental data. In present work, a series of simulated quenching experiments for steel 1080 and 4140 steel have been carried out. With five adjustable parameters, a large variety of cooling conditions has been created and applied to the simulated quenching. Effect of delayed quenching and the associated phenomenon of inverse hardening have been addressed with emphasis.