Chemical components, main mineral content and mineral composition of rare earth ore in Yunnan Province was measurated by the analysis of the spectrum and the chemical components. The study shows that main metals miner...Chemical components, main mineral content and mineral composition of rare earth ore in Yunnan Province was measurated by the analysis of the spectrum and the chemical components. The study shows that main metals mineral in the rare earth ore are magnetite, tatanomagnetite, limonite; less metals mineral are ilmenite, hematite; some minim minerals were iron pyrites, zircon, scheelite, and so on. Main nonmetals mineral are quartz, feldspar(plagioclase, K-feldspar); less nonmetals mineral are hopfnerite, biotite, titanite; some minim minerals are kaolinite and dolomite. Ilmenite has the highest content of Sc as 175 g·t -1, next is titanite as 81.2 g·t -1. Based on this result, A new method of extracting Sc is put forward. The technological flowsheet of separating Sc of low-intensity magnetic separation,tabing, gravity concentrate, high-gradient magnetic separation, and electrostatic separation was prepared. Amplified experiment obtained Sc concentrate with Sc content of 148.54 g·t -1, the yield of 7.92%,recovery of 69.20%, at the same time, a Fe concentrate with the grade of 63.88% and the yield of 5.91% is obtained.展开更多
Two phosphorylcarboxylic acids,3-((bis(2-ethylhexyloxy))phosphoryl)propanoic acid(PPA) and 3-((bis(2-ethylhexyloxy))phosphoryl)-3-phenylpropanoic acid(PPPA),were synthesized for separating yttrium from other rare eart...Two phosphorylcarboxylic acids,3-((bis(2-ethylhexyloxy))phosphoryl)propanoic acid(PPA) and 3-((bis(2-ethylhexyloxy))phosphoryl)-3-phenylpropanoic acid(PPPA),were synthesized for separating yttrium from other rare earths in the chloride feed of ion-adsorption type rare earth concentrate.The effect of the factors such as pH_(1/2),temperature,saponification degree and phase modifiers was investigated.The separation efficiencies of PPA and PPPA are obviously better than the typical extractants such as sec-octylphenoxy acetic acid(CA-12) and naphthenic acid(NA).The extraction process of rare earths by PPA and PPPA is a cation exchanging reaction,which is similar to those of CA-12 and NA.The loaded rare earths in both PPA and PPPA systems can be effectively back-extracted by 0.5 mol/L HCl or higher concentration.A cascade extraction process for separating yttrium from other rare earths was developed using PPPA as the extractant.The yttrium product with the purity of 97.20 wt% was obtained by 35 stages of extraction and 12 stages of scrubbing.展开更多
文摘Chemical components, main mineral content and mineral composition of rare earth ore in Yunnan Province was measurated by the analysis of the spectrum and the chemical components. The study shows that main metals mineral in the rare earth ore are magnetite, tatanomagnetite, limonite; less metals mineral are ilmenite, hematite; some minim minerals were iron pyrites, zircon, scheelite, and so on. Main nonmetals mineral are quartz, feldspar(plagioclase, K-feldspar); less nonmetals mineral are hopfnerite, biotite, titanite; some minim minerals are kaolinite and dolomite. Ilmenite has the highest content of Sc as 175 g·t -1, next is titanite as 81.2 g·t -1. Based on this result, A new method of extracting Sc is put forward. The technological flowsheet of separating Sc of low-intensity magnetic separation,tabing, gravity concentrate, high-gradient magnetic separation, and electrostatic separation was prepared. Amplified experiment obtained Sc concentrate with Sc content of 148.54 g·t -1, the yield of 7.92%,recovery of 69.20%, at the same time, a Fe concentrate with the grade of 63.88% and the yield of 5.91% is obtained.
基金Project supported by the National Key Research and Development Project of China(2019YFC0605003)the Strategic Priority Research Program of CAS(XDA02030100)。
文摘Two phosphorylcarboxylic acids,3-((bis(2-ethylhexyloxy))phosphoryl)propanoic acid(PPA) and 3-((bis(2-ethylhexyloxy))phosphoryl)-3-phenylpropanoic acid(PPPA),were synthesized for separating yttrium from other rare earths in the chloride feed of ion-adsorption type rare earth concentrate.The effect of the factors such as pH_(1/2),temperature,saponification degree and phase modifiers was investigated.The separation efficiencies of PPA and PPPA are obviously better than the typical extractants such as sec-octylphenoxy acetic acid(CA-12) and naphthenic acid(NA).The extraction process of rare earths by PPA and PPPA is a cation exchanging reaction,which is similar to those of CA-12 and NA.The loaded rare earths in both PPA and PPPA systems can be effectively back-extracted by 0.5 mol/L HCl or higher concentration.A cascade extraction process for separating yttrium from other rare earths was developed using PPPA as the extractant.The yttrium product with the purity of 97.20 wt% was obtained by 35 stages of extraction and 12 stages of scrubbing.