It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously...It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.展开更多
The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag...The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag powder as auxiliary cementitious material is proposed and experiments are carried out by response surface methodology(RSM). Multivariate nonlinear response models are constructed to investigate the effect of factors on the uniaxial compressive strength(UCS) of tailings wet shotcrete(TWSC). The UCS of TWSC is predicted and optimized by constructing Gaussian process regression(GPR) and genetic algorithm(GA). The UCS of TWSC is gradually enhanced with the increase of slag powder dosage and fineness modulus, and it is enhanced first and then decreased with the increase of fly ash dosage. The microstructure of TWSC has the highest gray value and the highest UCS when the fly ash dosage is about 120 kg·m^(-3). The GPR–GA model constructed in this study achieves high accuracy prediction and optimization of the UCS of TWSC under multi-factor conditions.展开更多
Wetting film thinning measurement was introduced to clarify the wettability and floatability of solid surfaces with varying roughness. The wettability was quantified using the contact angle measurement combined with t...Wetting film thinning measurement was introduced to clarify the wettability and floatability of solid surfaces with varying roughness. The wettability was quantified using the contact angle measurement combined with the dynamic force microbalance test between solid surfaces and water droplets, while the floatability was investigated by the bubble-solid surface dynamic attachment observation and the induction time measurement. The results show that the water contact angles reduce(14.53°, 12.74°, and 6.71°)with the increase of glass surface roughness, while the water droplet-glass adhesion forces intensify(11.1, 19.1 and 19.2 μN) owing to the stable wetting film. The distortion of the contact surface and the Wenzel state are the causes. In contrast, the hydrophobized surfaces have the growing apparent contact angles(38.08°, 69.81°, and 81.01°), declining adhesion strength and shortening induction time(863, 352and 12 ms) along with the increasing surface roughness. The weak wettability and fine floatability on the rough hydrophobized surface is reflected in the fast wetting film drainage dynamics and three-phase contact formation, which may be attributed to the wetting film with short diameter on tiny rough nubs and the entrapped air in the grooves as a bridge between the bulk bubble and the solid surface.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, vo...Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.展开更多
The adhesion and wetting of non-reactive liquid metals with solid ionocovalent oxides are studied on the basis of the experimental work of adhesion W data obtained with the sessile drop method.An analysis of the exper...The adhesion and wetting of non-reactive liquid metals with solid ionocovalent oxides are studied on the basis of the experimental work of adhesion W data obtained with the sessile drop method.An analysis of the experimental W values of different liquid metals on various solid oxides is first performed to evidence the de- pendence of the work of adhesion of a metal/oxide system on the electron density of the metal and on the thermodynamic stability of the oxide.An electronic model is then proposed to describe the microscopic mech- anism of metal-oxide interactions.Based on the model,the contact angle and the work of adhesion of different liquid metals on various solid oxides can be interpreted and estimated,and their correlations to the various physical quantities of the oxides can be easily deduced.The basic consideration of the model is that the adhe- sion between a metal and an oxide is assured by the electron transfer from the metal into the oxide valence band which is not completely filled of electrons at high temperatures,and is enhanced when this electron trans- fer at the metal/oxide interface is intensified.The influence of interface defects on the wetting and adhesion is suggested and discussed.展开更多
Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are ...Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are briefly described and various technologically important processes are analysed in relationwith liquid metal-solid wetting.展开更多
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ...As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth...The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.展开更多
The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cem...The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials.Therefore,it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete(TWSC)and to investigate the optimal mix proportion.In this paper,a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.The strength prediction and mix proportion optimization of TWSC are carried out by machine learning techniques.The results show that the response model has R^(2)>0.94 and P<0.01,which indicates that the model has high reliability.Moreover,the strength of TWSC increases with the increase of tailings fineness modulus and decrease of water-binder ratio,while it also increases and then decreases with the increase of replacement rate of slag powder to cement(SRC rate).The extreme learning machine(ELM)constructed in this paper predicts the strength of TWSC with an accuracy of more than 98%and achieves rapid prediction under multi-factor conditions.It is worth mentioning that the ELM combined with the genetic algorithm(ELM-GA)collaboratively solved to obtain the mix proportion for C15 and C20 strength grades of TWSC and the maximum error is verified by experiments to be less than 2%.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21325417, 51533008, and 51703194)National Key R&D Program of China (No. 2016YFA0200200)Fundamental Research Funds for the Central Universities (Nos. 2017QNA4036 and 2017XZZX008-06)
文摘It is crucial to develop flexible and wearable electronic devices that have attracted tremendous interest due to their merits on compactness,flexibility and high capacitive properties.Herein we report the continuously ordered macroscopic poly(ionic liquid)-graphene fibers by wet spinning method via liquid crystal assembly for supercapacitor application.The fabricated all-solid-state supercapacitors exhibited a high areal capacitance(268.2 mF cm 2)and volumetric capacitance(204.6 F cm 3)with an outstanding areal energy density(9.31μWh cm-2)and volumetric energy density(8.28 mWh cm-3).The fiber supercapacitors demonstrated exceptional cycle life for straight electrodes of about 10,000 cycles(94.2%capacitance retention)and flexibility at different angles(0°,45°,90°,180°)along with a good flexible cycling stability after 6000 cycles(92.7%capacitance retention).To date,such a novel poly(ionic liquid)-graphene fiber supercapacitors would be a new platform in real-time flexible electronics.
基金financially supported by the National Key Research and Development Program of China (Nos.2018YFC1900603 and 2018YFC0604604)。
文摘The development of solid waste resources as constituent materials for wet shotcrete has significant economic and environmental advantages. In this study, the concept of using tailings as aggregate and fly ash and slag powder as auxiliary cementitious material is proposed and experiments are carried out by response surface methodology(RSM). Multivariate nonlinear response models are constructed to investigate the effect of factors on the uniaxial compressive strength(UCS) of tailings wet shotcrete(TWSC). The UCS of TWSC is predicted and optimized by constructing Gaussian process regression(GPR) and genetic algorithm(GA). The UCS of TWSC is gradually enhanced with the increase of slag powder dosage and fineness modulus, and it is enhanced first and then decreased with the increase of fly ash dosage. The microstructure of TWSC has the highest gray value and the highest UCS when the fly ash dosage is about 120 kg·m^(-3). The GPR–GA model constructed in this study achieves high accuracy prediction and optimization of the UCS of TWSC under multi-factor conditions.
基金supported by the National Nature Science Foundation of China(Nos.51904300,21978318,51920105007,and 52274278)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX21_2403).
文摘Wetting film thinning measurement was introduced to clarify the wettability and floatability of solid surfaces with varying roughness. The wettability was quantified using the contact angle measurement combined with the dynamic force microbalance test between solid surfaces and water droplets, while the floatability was investigated by the bubble-solid surface dynamic attachment observation and the induction time measurement. The results show that the water contact angles reduce(14.53°, 12.74°, and 6.71°)with the increase of glass surface roughness, while the water droplet-glass adhesion forces intensify(11.1, 19.1 and 19.2 μN) owing to the stable wetting film. The distortion of the contact surface and the Wenzel state are the causes. In contrast, the hydrophobized surfaces have the growing apparent contact angles(38.08°, 69.81°, and 81.01°), declining adhesion strength and shortening induction time(863, 352and 12 ms) along with the increasing surface roughness. The weak wettability and fine floatability on the rough hydrophobized surface is reflected in the fast wetting film drainage dynamics and three-phase contact formation, which may be attributed to the wetting film with short diameter on tiny rough nubs and the entrapped air in the grooves as a bridge between the bulk bubble and the solid surface.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
基金Project(KRF-2005-210-D00042) supported by the Korean Research Foundation Grant Funded by Korea Government (MOEHRD)
文摘Alumina/zirconia composites were synthesized by wet-milling technique and rapid consolidation with high frequency induction heat sintering(HFIHS). The starting materials were a mixture of alumina micro-powder (80%, volume fraction) and 3YSZ nano-powders (20%). The mixtures were optimized for good sintering behaviors and mechanical properties. Nano-crystalline grains are obtained after 24 h milling. The nano-structured powder compacts are then processed to full density at different temperatures by HFIHS. Effects of temperature on the mechanical and microstructure properties were studied. Al2O3-3YSZ composites with higher mechanical properties and small grain size are successfully developed at relatively low temperatures through this technique.
文摘The adhesion and wetting of non-reactive liquid metals with solid ionocovalent oxides are studied on the basis of the experimental work of adhesion W data obtained with the sessile drop method.An analysis of the experimental W values of different liquid metals on various solid oxides is first performed to evidence the de- pendence of the work of adhesion of a metal/oxide system on the electron density of the metal and on the thermodynamic stability of the oxide.An electronic model is then proposed to describe the microscopic mech- anism of metal-oxide interactions.Based on the model,the contact angle and the work of adhesion of different liquid metals on various solid oxides can be interpreted and estimated,and their correlations to the various physical quantities of the oxides can be easily deduced.The basic consideration of the model is that the adhe- sion between a metal and an oxide is assured by the electron transfer from the metal into the oxide valence band which is not completely filled of electrons at high temperatures,and is enhanced when this electron trans- fer at the metal/oxide interface is intensified.The influence of interface defects on the wetting and adhesion is suggested and discussed.
文摘Wetting phenomenon occurring between liquid metals and solid materials is important in manytechnological processes involving a liquid phase. The fundamentals of wetting with the emphasis on metal-ce-ramic systems are briefly described and various technologically important processes are analysed in relationwith liquid metal-solid wetting.
基金supported by the National key research and development program (2019YFA0607104)National Natural Science Foundation of China (Grant Nos. 41991231, 42275034, 41975076, 42075029, 42075017, and 42075018)the Gansu Provincial Science and Technology Project (22JR5RA405)。
文摘As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金The work described in this paper was partially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project Nos.HKU 17207518 and R5037-18).
文摘The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method.
基金funded by the National Key Research and Development Program of China(Grant Nos.2018YFC1900603,2018YFC0604604).
文摘The super-fine particle size of tailings is its drawback as a recycled resource,which is reflected in the low strength of the new construction and industrial materials formed when it is mixed with cement and other cementitious materials.Therefore,it is crucial to study the effect of tailings particle size and cementitious material on the strength of tailings wet shotcrete(TWSC)and to investigate the optimal mix proportion.In this paper,a multivariate nonlinear response model was constructed by conducting central composite experiments to investigate the effect of different factors on the strength of TWSC.The strength prediction and mix proportion optimization of TWSC are carried out by machine learning techniques.The results show that the response model has R^(2)>0.94 and P<0.01,which indicates that the model has high reliability.Moreover,the strength of TWSC increases with the increase of tailings fineness modulus and decrease of water-binder ratio,while it also increases and then decreases with the increase of replacement rate of slag powder to cement(SRC rate).The extreme learning machine(ELM)constructed in this paper predicts the strength of TWSC with an accuracy of more than 98%and achieves rapid prediction under multi-factor conditions.It is worth mentioning that the ELM combined with the genetic algorithm(ELM-GA)collaboratively solved to obtain the mix proportion for C15 and C20 strength grades of TWSC and the maximum error is verified by experiments to be less than 2%.