Insulating parts are easily subjected to pollution which may cause damage to the electric system. A typical disc insulator is chosen as the target to test its flashover voltage by using an artificial pollution system....Insulating parts are easily subjected to pollution which may cause damage to the electric system. A typical disc insulator is chosen as the target to test its flashover voltage by using an artificial pollution system. This test system aims at obtaining characteristic parameters of damage for chosen conducting sola to the selected insulator. Experimental results show that thickness and electric conductivity of pollutant layer over insulators are the main parameters in damage evaluation. The flashover voltage decreases with increase of thickness and/or conductivity. These results provide a better basis on further revealing the damaging nature of conducting sol materials.展开更多
Cr2O3 has eminent slag corrosion resistance. So, the magnesite -chrome brick is thought as an important refractory material used in RH refining furnace in the process of steel-making around the world. After chromebear...Cr2O3 has eminent slag corrosion resistance. So, the magnesite -chrome brick is thought as an important refractory material used in RH refining furnace in the process of steel-making around the world. After chromebearing sols being prepared by sol-gel method, single sol ( Cr( OH)3) and mixed sol ( Mg( OH)2 - Cr( OH)3) were impregnated into magnesite - chrome bricks by vacuum impregnation. The corrosion resistance of the impregnated bricks to silicon steel slag was studied by porosimetric analysis and fractal dimension calculation. The results showed that the corrosion resistance of impregnated magnesite -chrome brick was better than that of the unimpregnated brick and the brick impregnated by MgSO4 solution, and the one which has surface-treated by Mg( OH)2 -Cr(OH)3 sol was the best, mainly because of lower apparent porosity, smaller pores diameter and their smoother inner sarface.展开更多
The TiO2, MoO3, PEO doped four-member tungstic acid sols were prepared for the first time. The stability of different doped content sols were investigated and optimized with rotational viscometer. The four-member dope...The TiO2, MoO3, PEO doped four-member tungstic acid sols were prepared for the first time. The stability of different doped content sols were investigated and optimized with rotational viscometer. The four-member doped tungstic acid sol was very stable which could be stored more than two months at room temperature. The WO3 electrochromic film prepared from this doped four- member tungstic acid sol had excellent performance and longevity of service.展开更多
Alumina sols with a molar ratio of 1 : 50 between aluminum sec-batoxide( ASB ) aud H2 O were fabricated by adding various amounts of nitric acid. The particle shape, zeta potential, polydispersity and effective par...Alumina sols with a molar ratio of 1 : 50 between aluminum sec-batoxide( ASB ) aud H2 O were fabricated by adding various amounts of nitric acid. The particle shape, zeta potential, polydispersity and effective particle size of alumina sol were examined by a TEM, a zeta PALS granularity analyzer and a zetaPALS zeta potential analyzer, respectively. By analyzing the change of zeta potential and doable-layer thickness with nitric acid concentration, the potential energy curves of colloidal particles were mapped on the basis of DLVO theory, and the effects of nitric acid concentration on the stability of alumina sols were intensively studied. The results show that for the alumina sols with a mol ratio of 1 : 50 between ASB and H2O, the total interaction energy of the colloidal particle is at a maximum when the nitric acid concentration is 0.22 mol/ L. Therefore, the stability of the colloid reaches optimum at the nitric acid concentration of 0.22 mol / L.展开更多
Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate d...Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate diacrylate(BPA)was employed to crosslink poly(ethylene glycol)methyl ether acrylate(PEGMEA)via the green and rapid UV polymerization strategy.The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers,aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content,which was approved by a novel low-field nuclear magnetic resonance technique.The optimum membrane overcomes the tradeoff challenge:dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity,realizing a high CO_(2)permeability of 1711 Barrer and 100-h long-term running stability under 15 atm.The proposed membrane fabrication approach,hence,opens a novel gate for developing high-performance robust membranes for CO_(2)capture.展开更多
A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-amino...A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.展开更多
The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in in...The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in integrated circuits.In this study,an innovative gate-all-around(GAA)TFET,which represents a negative capacitance GAA gate-to-source overlap TFET(NCGAA-SOL-TFET),is proposed to increase the driving current.The proposed NCGAA-SOL-TFET is developed based on technology computer-aided design(TCAD)simulations.The proposed structure can solve the problem of the insufficient driving capability of conventional TFETs and is suitable for sub-3-nm nodes.In addition,due to the negative capacitance effect,the surface potential of the channel can be amplified,thus enhancing the driving current.The gateto-source overlap(SOL)technique is used for the first time in an NCGAA-TFET to increase the band-to-band tunneling rate and tunneling area at the silicon-germanium heterojunction.By optimizing the design of the proposed structure via adjusting the SOL length and the ferroelectric layer thickness,a sufficiently large on-state current of 17.20μA can be achieved and the threshold voltage can be reduced to 0.31 V with a sub-threshold swing of 44.98 mV/decade.Finally,the proposed NCGAA-SOL-TFET can overcome the Boltzmann limit-related problem,achieving a driving current that is comparable to that of the traditional complementary metal-oxide semiconductor devices.展开更多
Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active comp...Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active compound of Amomum compactum Sol.ex Maton volatile oil and an effective drug for the treatment of pneumonia,showed remarkable anti-inflammatory effects on colitis pathogenesis.However,its mechanism of action and direct targets remain unclear.This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model.The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells.In addition,1,8-cineole targets were revealed by drug affinity responsive target stability,thermal shift assay,cellular thermal shift assay,and heat shock protein 90(HSP90)adenosine triphosphatases(ATPase)activity assays.The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function.Mechanistically,1,8-cineole directly interacted with HSP90 and decreased its ATPase activity,also inhibited nucleotide-binding and oligomerization domain-,leucine rich repeat-,and pyrin domain-containing 3(NLRP3)binding to HSP90 and suppressor of G-two allele of SKP1(SGT1)and suppressed NLRP3 inflammasome activation in macrophages.These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.展开更多
基金Sponsored by State Key Laboratory of Explosion Science and Technology Research Foundation (ZDKT08-04)
文摘Insulating parts are easily subjected to pollution which may cause damage to the electric system. A typical disc insulator is chosen as the target to test its flashover voltage by using an artificial pollution system. This test system aims at obtaining characteristic parameters of damage for chosen conducting sola to the selected insulator. Experimental results show that thickness and electric conductivity of pollutant layer over insulators are the main parameters in damage evaluation. The flashover voltage decreases with increase of thickness and/or conductivity. These results provide a better basis on further revealing the damaging nature of conducting sol materials.
基金supported by the Natural Science Foundation of Hubei Province (2007ABA372)the New Century Excellent Talents in University (NCET-06-0676)
文摘Cr2O3 has eminent slag corrosion resistance. So, the magnesite -chrome brick is thought as an important refractory material used in RH refining furnace in the process of steel-making around the world. After chromebearing sols being prepared by sol-gel method, single sol ( Cr( OH)3) and mixed sol ( Mg( OH)2 - Cr( OH)3) were impregnated into magnesite - chrome bricks by vacuum impregnation. The corrosion resistance of the impregnated bricks to silicon steel slag was studied by porosimetric analysis and fractal dimension calculation. The results showed that the corrosion resistance of impregnated magnesite -chrome brick was better than that of the unimpregnated brick and the brick impregnated by MgSO4 solution, and the one which has surface-treated by Mg( OH)2 -Cr(OH)3 sol was the best, mainly because of lower apparent porosity, smaller pores diameter and their smoother inner sarface.
文摘The TiO2, MoO3, PEO doped four-member tungstic acid sols were prepared for the first time. The stability of different doped content sols were investigated and optimized with rotational viscometer. The four-member doped tungstic acid sol was very stable which could be stored more than two months at room temperature. The WO3 electrochromic film prepared from this doped four- member tungstic acid sol had excellent performance and longevity of service.
基金Supported by the Foundation for University Key Teacher of theMinistry of Education,the Key Research Project of the Ministry ofEducation (No.99087)
文摘Alumina sols with a molar ratio of 1 : 50 between aluminum sec-batoxide( ASB ) aud H2 O were fabricated by adding various amounts of nitric acid. The particle shape, zeta potential, polydispersity and effective particle size of alumina sol were examined by a TEM, a zeta PALS granularity analyzer and a zetaPALS zeta potential analyzer, respectively. By analyzing the change of zeta potential and doable-layer thickness with nitric acid concentration, the potential energy curves of colloidal particles were mapped on the basis of DLVO theory, and the effects of nitric acid concentration on the stability of alumina sols were intensively studied. The results show that for the alumina sols with a mol ratio of 1 : 50 between ASB and H2O, the total interaction energy of the colloidal particle is at a maximum when the nitric acid concentration is 0.22 mol/ L. Therefore, the stability of the colloid reaches optimum at the nitric acid concentration of 0.22 mol / L.
基金This research was financially supported by National Natural Science Foundation of China(No.22125801,21975005,21878004)Cooperative Research Project of BJUT-NTUT(No.110-03).
文摘Emerging excessive greenhouse gas emissions pose great threats to the ecosystem,which thus requires efficient CO_(2)capture to mitigate the disastrous issue.In this report,large molecular size bisphenol A ethoxylate diacrylate(BPA)was employed to crosslink poly(ethylene glycol)methyl ether acrylate(PEGMEA)via the green and rapid UV polymerization strategy.The microstructure of such-prepared membrane could be conveniently tailored by tuning the ratio of the two prepolymers,aiming at obtaining the optimized microstructures with suitable mesh size and PEO sol content,which was approved by a novel low-field nuclear magnetic resonance technique.The optimum membrane overcomes the tradeoff challenge:dense microstructures lower the gas permeability while loose microstructures lower high-pressure-resistance capacity,realizing a high CO_(2)permeability of 1711 Barrer and 100-h long-term running stability under 15 atm.The proposed membrane fabrication approach,hence,opens a novel gate for developing high-performance robust membranes for CO_(2)capture.
基金supported by the National Natural Science Foundation of China (21603125)Science-Education-Industry Integration Innovation Pilot Project of Qilu University of Technology (2020KJC-GH13)+2 种基金International Cooperation Project of Shandong Academy of Sciences (2019GHPY09)Natural Science Foundation of Shandong Province (ZR2019BEM025)Young doctor Cooperation Foundation of Qilu University of Technology (Shandong Academy of Sciences) (2019BSHZ0016)。
文摘A mesoporous UiO-66-NH_(2) aerogel is prepared via a straightforward sol-gel method without using any binders or mechanical pressures, in which the amine groups are directly introduced into the matrix by using 2-aminoterephthalic acid. The novel UiO-66-NH_(2) aerogel also exhibits high specific surface area and mesopore-dominated structure, implying its highly potential use in CO_(2) adsorption. For ulteriorly investigating the effect of amine loading on the CO_(2) adsorption ability, a series of UiO-66-NH_(2) aerogel with different amino content is fabricated by changing the ligand/metal molar ratio. When the molar ratio is 1.45, the CO_(2) adsorption capacity reaches the optimum value of 2.13 mmol·g^(-1) at 25 ℃ and 0.1 MPa, which is 12.2% higher than that of pure UiO-66 aerogel. Additionally, UiO-66-NH_(2)-1.45 aerogel also has noticeable CO_(2) selectivity against N_(2) and CH_(4) as well as good regeneration stability. Such results imply that it has good application prospect in the field of CO_(2) adsorption, and also contains the potential to be applied in catalysis, separation and other fields.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22F040001)the National Natural Science Foundation of China(Grant No.62071160)the Graduate Scientific Research Foundation of Hangzhou Dianzi University。
文摘The steep sub-threshold swing of a tunneling field-effect transistor(TFET)makes it one of the best candidates for lowpower nanometer devices.However,the low driving capability of TFETs prevents their application in integrated circuits.In this study,an innovative gate-all-around(GAA)TFET,which represents a negative capacitance GAA gate-to-source overlap TFET(NCGAA-SOL-TFET),is proposed to increase the driving current.The proposed NCGAA-SOL-TFET is developed based on technology computer-aided design(TCAD)simulations.The proposed structure can solve the problem of the insufficient driving capability of conventional TFETs and is suitable for sub-3-nm nodes.In addition,due to the negative capacitance effect,the surface potential of the channel can be amplified,thus enhancing the driving current.The gateto-source overlap(SOL)technique is used for the first time in an NCGAA-TFET to increase the band-to-band tunneling rate and tunneling area at the silicon-germanium heterojunction.By optimizing the design of the proposed structure via adjusting the SOL length and the ferroelectric layer thickness,a sufficiently large on-state current of 17.20μA can be achieved and the threshold voltage can be reduced to 0.31 V with a sub-threshold swing of 44.98 mV/decade.Finally,the proposed NCGAA-SOL-TFET can overcome the Boltzmann limit-related problem,achieving a driving current that is comparable to that of the traditional complementary metal-oxide semiconductor devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.:81830114,82004232,82174253,and 82104707)Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.:2021A1515011215 and 2022A1515110827)+6 种基金Guangzhou Basic and Applied Basic Research Foundation,China(Grant No.:2023A1515011149)China Postdoctoral Science Foundation(Grant Nos.:2020M683206 and 2021M701443)the Key Area Research and Development Program of Guangdong Province,China(Grant No.:2020B1111100010)Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine,China(Grant No.:202102010014)the Cross-disciplinary Special Project of Jinan University,China(Grant No.:21621115)the State Key Laboratory of Dampness Syndrome of Chinese Medicine,China(Grant No.:SZ2021KF13)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University,China(Grant No.:2021CXB024).
文摘Ulcerative colitis(UC)is characterized by chronic relapsing intestinal inflammation.Currently,there is no effective treatment for the disease.According to our preliminary data,1,8-cineole,which is the main active compound of Amomum compactum Sol.ex Maton volatile oil and an effective drug for the treatment of pneumonia,showed remarkable anti-inflammatory effects on colitis pathogenesis.However,its mechanism of action and direct targets remain unclear.This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model.The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells.In addition,1,8-cineole targets were revealed by drug affinity responsive target stability,thermal shift assay,cellular thermal shift assay,and heat shock protein 90(HSP90)adenosine triphosphatases(ATPase)activity assays.The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function.Mechanistically,1,8-cineole directly interacted with HSP90 and decreased its ATPase activity,also inhibited nucleotide-binding and oligomerization domain-,leucine rich repeat-,and pyrin domain-containing 3(NLRP3)binding to HSP90 and suppressor of G-two allele of SKP1(SGT1)and suppressed NLRP3 inflammasome activation in macrophages.These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.