In this paper,the new theory frame and practical methhod for determining all the minimum solutions of Fuzzy matrix equation and transitive closure of Fuzzy relation is described,and it has been carried out on the mier...In this paper,the new theory frame and practical methhod for determining all the minimum solutions of Fuzzy matrix equation and transitive closure of Fuzzy relation is described,and it has been carried out on the miero-computer quickly and accurately.展开更多
In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp m...In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp matrix equations. Then the fuzzy approximate solution of the fuzzy matrix equation is obtained by solving two crisp matrix equations. The existence condition of the strong LR fuzzy solution to the fuzzy matrix equation is also discussed. Some examples are given to illustrate the proposed method. Our results enrich the fuzzy linear systems theory.展开更多
A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational ma...A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational matrix of Bernstein polynomials is derived. With the operational matrix, the equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear equations after dispersing the variable. By solving the linear equations, the numerical solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples are provided to show that the method is computationally efficient.展开更多
Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive de...Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.展开更多
文摘In this paper,the new theory frame and practical methhod for determining all the minimum solutions of Fuzzy matrix equation and transitive closure of Fuzzy relation is described,and it has been carried out on the miero-computer quickly and accurately.
文摘In the paper, a class of fuzzy matrix equations AX=B where A is an m × n crisp matrix and is an m × p arbitrary LR fuzzy numbers matrix, is investigated. We convert the fuzzy matrix equation into two crisp matrix equations. Then the fuzzy approximate solution of the fuzzy matrix equation is obtained by solving two crisp matrix equations. The existence condition of the strong LR fuzzy solution to the fuzzy matrix equation is also discussed. Some examples are given to illustrate the proposed method. Our results enrich the fuzzy linear systems theory.
基金supported by the Natural Science Foundation of Hebei Province under Grant No.A2012203407
文摘A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational matrix of Bernstein polynomials is derived. With the operational matrix, the equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear equations after dispersing the variable. By solving the linear equations, the numerical solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples are provided to show that the method is computationally efficient.
文摘Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.