In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for ele...In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.展开更多
This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimat...This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.展开更多
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s...This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]展开更多
An exact three-dimensional solution for stochastic chaos of I wave groups of M random internal waves governed by the Navier-Stokes equations is developed. The Helmholtz decomposition is used to expand the Dirichlet pr...An exact three-dimensional solution for stochastic chaos of I wave groups of M random internal waves governed by the Navier-Stokes equations is developed. The Helmholtz decomposition is used to expand the Dirichlet problem for the Navier-Stokes equations into the Archimedean, Stokes, and Navier problems. The exact solution is obtained with the help of the method of decomposition in invariant structures. Differential algebra is constructed for six families of random invariant structures: random scalar kinematic structures, time-complementary random scalar kinematic structures, random vector kinematic structures, time-complementary random vector kinematic structures, random scalar dynamic structures, and random vector dynamic structures. Tedious computations are performed using the experimental and theoretical programming in Maple. The random scalar and vector kinematic structures and the time-complementary random scalar and vector kinematic structures are applied to solve the Stokes problem. The random scalar and vector dynamic structures are employed to expand scalar and vector variables of the Navier problem. Potentialization of the Navier field becomes available since vortex forces, which are expressed via the vector potentials of the Helmholtz decomposition, counterbalance each other. On the contrary, potential forces, which are described by the scalar potentials of the Helmholtz decomposition, superimpose to generate the gradient of a dynamic random pressure. Various constituents of the kinetic energy are ascribed to diverse interactions of random, three-dimensional, nonlinear, internal waves with a two-fold topology, which are termed random exponential oscillons and pulsons. Quantization of the kinetic energy of stochastic chaos is developed in terms of wave structures of random elementary oscillons, random elementary pulsons, random internal, diagonal, and external elementary oscillons, random wave pulsons, random internal, diagonal, and external wave oscillons, random group pulsons, random internal, diagonal, and external group oscillons, a random energy pulson, random internal, diagonal, and external energy oscillons, and a random cumulative energy pulson.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
基金Supported by the Start-up Fund of Fuzhou University under Grant No.0460022346
文摘In this paper we investigate the time-machine problem in the electromagnetic field. Based on a metric which is a more general form of Ori's, we solve the Einstein's equations with the energy-momentum tensors for electromagnetic field, and construct the time-machine solutions, which solve the time machine problem in electromagnetic field.
文摘This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.
基金supported by the "Fundamental Research Funds for the Central Universities"the National Natural Science Foundation of China (10871151)
文摘This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]
文摘An exact three-dimensional solution for stochastic chaos of I wave groups of M random internal waves governed by the Navier-Stokes equations is developed. The Helmholtz decomposition is used to expand the Dirichlet problem for the Navier-Stokes equations into the Archimedean, Stokes, and Navier problems. The exact solution is obtained with the help of the method of decomposition in invariant structures. Differential algebra is constructed for six families of random invariant structures: random scalar kinematic structures, time-complementary random scalar kinematic structures, random vector kinematic structures, time-complementary random vector kinematic structures, random scalar dynamic structures, and random vector dynamic structures. Tedious computations are performed using the experimental and theoretical programming in Maple. The random scalar and vector kinematic structures and the time-complementary random scalar and vector kinematic structures are applied to solve the Stokes problem. The random scalar and vector dynamic structures are employed to expand scalar and vector variables of the Navier problem. Potentialization of the Navier field becomes available since vortex forces, which are expressed via the vector potentials of the Helmholtz decomposition, counterbalance each other. On the contrary, potential forces, which are described by the scalar potentials of the Helmholtz decomposition, superimpose to generate the gradient of a dynamic random pressure. Various constituents of the kinetic energy are ascribed to diverse interactions of random, three-dimensional, nonlinear, internal waves with a two-fold topology, which are termed random exponential oscillons and pulsons. Quantization of the kinetic energy of stochastic chaos is developed in terms of wave structures of random elementary oscillons, random elementary pulsons, random internal, diagonal, and external elementary oscillons, random wave pulsons, random internal, diagonal, and external wave oscillons, random group pulsons, random internal, diagonal, and external group oscillons, a random energy pulson, random internal, diagonal, and external energy oscillons, and a random cumulative energy pulson.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.