With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery ...With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.展开更多
Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at t...Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
High-voltage battery systems bring significant increases in energy density but are also accompanied by fast degradation of electrochemical performance and serious safety issues.Herein,Li^(+)coordination structure regu...High-voltage battery systems bring significant increases in energy density but are also accompanied by fast degradation of electrochemical performance and serious safety issues.Herein,Li^(+)coordination structure regulation was conducted to formulate a non-flammable electrolyte,which consists of 1.5 M lithium bis(fluor sulfonyl)imide(LiFSI)in triethyl phosphate and methyl 2,2,2-trifluoromethyl carbonate(FEMC).The renamed TEP-FEMC-FEC(TFF)electrolyte exhibits an FSI^(−)-dominated solvation structure contributed by the weakly-solvating ability of FEMC.The generated inorganic-rich interfacial layers are conducive to stabilizing the phase transition of high-voltage cathodes while suppressing the dendritic growth on lithium metal or co-intercalation behavior in graphite anode.This TFF electrolyte enables LiCoO_(2)||Li batteries to achieve capacity maintenance over 79%after 400 cycles with high-rate of 5 C at an ultra-high voltage of 4.6 V,and an outstanding capacity exceeding 100 mA h g^(−1)even at a super-high current density of 20 C.Additionally,the Ah-level LiCoO_(2)||graphite pouch cells also exhibit high capacity retention and satisfactory safety performance even under fast charging.This work provides a novel research direction for the pursuit of high energy density non-flammable electrolytes.展开更多
Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat...Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.展开更多
Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT)...Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT),leading to low coulombic efficiency and limited cycle stability.Thus,it is essential to opti-mize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT.Herein,we introduce branch chain-rich diisopropyl ether(DIPE)into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether(DPE)elec-trolyte as a co-solvent for high-performance LMBs at-20℃.The incorporation of DIPE not only enhances the disorder within the electrolyte,but also induces a steric hindrance effect form DIPE’s branch chain,excluding other solvent molecules from Li+solvation sheath.Both of these factors contribute to the weak interactions between Li^(+)and solvent molecules,effectively reducing the desolvation energy of the electrolyte.Consequently,Li(50μm)||LFP(mass loading~10 mg cm^(-2))cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at-20℃,delivering 87.2 mAh g^(-1),and over 255 cycles at 25℃ with 124.8 mAh g^(-1).DIPE broadens the electrolyte design from molecular structure considera-tions,offering a promising avenue for highly stable LMBs at LT.展开更多
Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite gr...Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs.展开更多
Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid...Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid electrolytes,however,the Al anode and battery case suffer from corrosion.On the other hand,Al is irreversible in aqueous electrolyte with severe hydrogen evolution reaction.Here,we demonstrate a water-in-salt aluminum ion electrolyte(WISE)based on Al and lithium salts to tackle the above challenges.In the WISE system,water molecules can be confined within the Li^(+)solvation structures.This diminished Al^(3+)-H_(2)O interaction essentially eliminates the hydrolysis effect,effectively protecting Al anode from corrosion.Therefore,long-term Al plating/stripping can be realized.Furthermore,two types of high-performance full batteries have been demonstrated using copper hexacyanoferrate(CuHCF,a Prussian Blue Analogues)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM)as cathodes.The reversibility of Al anode laid the foundation for low cost rechargeable batteries suffering for large-scale energy storage.Broader context:Al batteries are expected to become a safe and sustainable alternative to lithium batteries.For decades,chase for a feasible Al secondary battery has not been successful.The key challenge is to find suitable cathode and electrolyte materials,together with which Al anode battery can function reversibly.Currently,fatal drawbacks have impeded the practical application of Al metal batteries(AMBs),such as sustained corrosion of Al anode and battery case in ionic liquid electrolytes,irreversibility issues as well as severe hydrogen evolution reaction during cycling in aqueous electrolyte.Therefore,electrolyte and their electrochemical kinetics play a vital role in the performance and environmental operating limitations of high-energy Al metal batteries.In this work,we demonstrate a nearly neutral Al ion water-in-salt electrolyte(WISE)to tackle the above challenges.The WISE shows excellent stability in the open atmosphere.The distinct solvation-sheath structure of Al^(3+)in the WISE system would protect Al metal anodes from corrosion and eliminate hydrogen evolution reaction effectively,further promoting the reversibility of Al metal anodes with dendrite-free morphology.Moreover,such a WISE exhibits superior compatibility with LiNi_(0.3)Co_(0.3)Mn_(0.3)O_(2)(NCM)and copper hexacyanoferrate(CuHCF)cathodes and long-term stabilities with high coulombic efficiency(CE)can be attained for full batteries with the WISE.The approach in this study can furnish an opportunity to develop reversible AMBs and lay the foundation for other potential multivalent-metalbased secondary batteries suffering from interface passivation and poor reversibility,which suggest the promise of multivalent metal batteries and their applications in large-scale energy storage.展开更多
The poor compatibility of ester electrolytes with lithium metal anode severely limits its use in high voltage lithium metal batteries(LMBs).In this work,a bidentate solvent 1,2-diethoxyethane(DEE) is introduced into e...The poor compatibility of ester electrolytes with lithium metal anode severely limits its use in high voltage lithium metal batteries(LMBs).In this work,a bidentate solvent 1,2-diethoxyethane(DEE) is introduced into ester electrolyte to regulate the ion-dipole interactions to enhance the solubility of LiNO_(3),which enables compatibility with Li anode and maintains the high voltage cathode stability.In the designed electrolyte,the steric effect of DEE facilitates the participation of NO_(3)^(-)and PF_6^(-)anions in the Li^(+) solvation structure,thus promoting the generation of inorganic-rich solid electrolyte interphase(SEI).And the low viscosity of DEE also ensures that the ester electrolyte poses good interracial wettability.As a result,our designed electrolyte enables the high-loading Li‖NCM622 and Li‖NCM811(^(3) mA h cm^(-2)) full cells to achieve stable cycling over 200 cycles,8 times longer than that of a conventional ester electrolyte.This work suggests that regulation of intermolecular interactions in conventional ester electrolytes is a scalable and effective approach to achieve excellent electrochemical performance of LMBs.展开更多
Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effe...Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.展开更多
Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and th...Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.展开更多
The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging f...The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs.展开更多
Rechargeable magnesium metal batteries need an electrolyte that forms a stable and ionically conductive solid electrolyte interphase(SEI)on the anodes.Here,we used molecular dynamic simulation,density functional theor...Rechargeable magnesium metal batteries need an electrolyte that forms a stable and ionically conductive solid electrolyte interphase(SEI)on the anodes.Here,we used molecular dynamic simulation,density functional theory calculation,and X-ray photoelectron spectroscopy analysis to investigate the solvation structures and SEI compositions in electrolytes consisting of dual-salts,magnesium bis(trifluoromethanesulfonyl)imide(MgTFSI_(2)),and MgCl_(2),with different additives in 1,2-dimethoxyethane(DME)solvent.We found that the formed[Mg_(3)(μ-Cl)_(4)(DME)mTFSI_(2)](m=3,5)inner-shell solvation clusters in MgTFSI_(2)-MgCl_(2)/DME electrolyte could easily decompose and form a MgO-and MgF_(2)-rich SEI.Such electron-rich inorganic species in the SEI,especially MgF_(2),turned out to be detrimental for Mg plating/stripping.To reduce the MgF_(2)and MgO contents in SEI,we introduce an electron-deficient tri(2,2,2-trifluoroethyl)borate(TFEB)additive in the electrolyte.Mg//Mg cells using the MgTFSI_(2)-MgCl_(2)/DME-TFEB electrolyte could cycle stably for over 400 h with a small polarization voltage of~150 mV.Even with the presence of 800 ppm H_(2)O,the electrolyte with TFEB additive could still preserve its good electrochemical performance.The optimized electrolyte also enabled stable cycling and high-rate capability for Mg//Mo6S8 and Mg//CuS full cells,showing great potential for future applications.展开更多
The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi...The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.展开更多
Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Bu...Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.展开更多
Clindamycin phosphate (CP), an antibacterial agent, has been reported to form several solid-state forms. The crystal structures of two CP solvates, a dimethyl sulfoxide (DMSO) solvate and a methanol/water solvate ...Clindamycin phosphate (CP), an antibacterial agent, has been reported to form several solid-state forms. The crystal structures of two CP solvates, a dimethyl sulfoxide (DMSO) solvate and a methanol/water solvate (solvate V), have been determined by single crystal X-ray diffraction. The properties and transformations of these forms were characterized by powder X-ray diffraction, Single-crystal X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, hot-stage microscopy, and dynamic vapor sorption. Very different hydrogen bonding networks exist among the host-host and host-solvent molecules in the two crystal structures, resulting in different moisture stabilities. The thermal stabilities of the two solvates upon heating and desolvation were also studied. When the temperature was above the boiling point of methanol, solvate V converted to a polymorphic phase after a one step desolvation process, whereas the desolvation temperature of the DMSO solvate was below the boiling point of DMSO. At the relative humidity above 43%, the DMSO solvate transformed to a hydrate at 25 ℃. In contrast, solvate V did not transform at any of the humidities studied.展开更多
The solvation structure of Li^(+) in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency(ICE) and poor cycle performance of silicon-based materials. Never theless, the che...The solvation structure of Li^(+) in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency(ICE) and poor cycle performance of silicon-based materials. Never theless, the chemical prelithiation agent is difficult to dope active Li^(+) in silicon-based anodes because of their low working voltage and sluggish Li^(+) diffusion rate. By selecting the lithium–arene complex reagent with 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized Si O/C anode can achieve an ICE of nearly 100%. Interestingly, the best prelithium efficiency does not correspond to the lowest redox half-potential(E_(1/2)), and the prelithiation efficiency is determined by the specific influencing factors(E_(1/2), Li^(+) concentration, desolvation energy, and ion diffusion path). In addition, molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li^(+). Furthermore, the positive effect of prelithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film characterizations.展开更多
Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tol...Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.展开更多
Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a ...Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a cell-nucleus structured electrolyte by introducing low-polarity 1,2-dimethoxyethane(DME) into dilute 1 M zinc trifluoromethanesulfonate(Zn(OTf)_(2)) aqueous solution,which features an OTf--rich Zn2^(+)-primary solvation sheath(PSS,inner nucleus) and the DMEmodulated Zn^(2+)-outer solvation sheath(outer layer).We find that DME additives with a low dosage do not participate in the Zn2+-PSS but reinforce the Zn-OTf-coordination,which guarantees good reaction kinetics under ultralow temperatures.Moreover,DME breaks the original H-bonding network of H2O,depressing the freezing point of electrolyte to-52.4℃.Such a cell-nucleus-solvation structure suppresses the H_(2)O-induced side reactions and forms an anion-derived solid electrolyte interphase on Zn and can be readily extended to 1,2-diethoxyethane.The as-designed electrolyte enables the Zn electrode deep cycling stability over 3500 h with a high depth-of-discharge of 51.3% and endows the Zn‖V_(2)O_(5)full battery with stable cycling over 1000 cycles at 40℃.This work would inspire the solvation structure design for low-temperature aqueous batteries.展开更多
基金supported by the National Nature Science Foundation of China(22209211 and 52172241)Hong Kong Research Grants Council(CityU 11315622)+1 种基金the research funds from South-Central Minzu University(YZZ22001)the National Key R&D Program of China(2021YFA1501101).
文摘With the merits of the high energy density of batteries and power density of supercapacitors,the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required.However,the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan.It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors.Using'water in salt'electrolytes can effectively broaden their electrochemical windows,but this is at the expense of high cost,low ionic conductivity,and narrow temperature compatibility,compromising the electrochemical performance of the Zn-ion hybrid supercapacitors.Thus,designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary.We developed a dilute water/acetonitrile electrolyte(0.5 m Zn(CF_(3)SO_(3))_(2)+1 m LiTFSI-H_(2)O/AN)for Zn-ion hybrid supercapacitors,which simultaneously exhibited expanded electrochemical window,decent ionic conductivity,and broad temperature compatibility.In this electrolyte,the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI-anions.As a result,a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.
基金supported by the Joint Funds of the National Natural Science Foundation of China(U2130204)the National Natural Science Foundation of China(52002022)+1 种基金the Young Elite Scientists Sponsorship Program by CAST(YESS20200364)the Beijing Outstanding Young Scientists Program(BJJWZYJH01201910007023).
文摘Aqueous Zn^(2+)-ion batteries(AZIBs),recognized for their high security,reliability,and cost efficiency,have garnered considerable attention.However,the prevalent issues of dendrite growth and parasitic reactions at the Zn electrode interface significantly impede their practical application.In this study,we introduced a ubiquitous biomolecule of phenylalanine(Phe)into the electrolyte as a multifunctional additive to improve the reversibility of the Zn anode.Leveraging its exceptional nucleophilic characteristics,Phe molecules tend to coordinate with Zn^(2+)ions for optimizing the solvation environment.Simultaneously,the distinctive lipophilicity of aromatic amino acids empowers Phe with a higher adsorption energy,enabling the construction of a multifunctional protective interphase.The hydrophobic benzene ring ligands act as cleaners for repelling H_(2)O molecules,while the hydrophilic hydroxyl and carboxyl groups attract Zn^(2+)ions for homogenizing Zn^(2+)flux.Moreover,the preferential reduction of Phe molecules prior to H_(2)O facilitates the in situ formation of an organic-inorganic hybrid solid electrolyte interphase,enhancing the interfacial stability of the Zn anode.Consequently,Zn||Zn cells display improved reversibility,achieving an extended cycle life of 5250 h.Additionally,Zn||LMO full cells exhibit enhanced cyclability of retaining 77.3%capacity after 300 cycles,demonstrating substantial potential in advancing the commercialization of AZIBs.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金supported by the National Science Foundation of Sichuan Province(2023NSFSC1124)Fundamental Research Funds for the Central Universities(YJ2021141)the Science and Technology Cooperation Special Fund of Sichuan University and Zigong City(2022CDZG-9).
文摘High-voltage battery systems bring significant increases in energy density but are also accompanied by fast degradation of electrochemical performance and serious safety issues.Herein,Li^(+)coordination structure regulation was conducted to formulate a non-flammable electrolyte,which consists of 1.5 M lithium bis(fluor sulfonyl)imide(LiFSI)in triethyl phosphate and methyl 2,2,2-trifluoromethyl carbonate(FEMC).The renamed TEP-FEMC-FEC(TFF)electrolyte exhibits an FSI^(−)-dominated solvation structure contributed by the weakly-solvating ability of FEMC.The generated inorganic-rich interfacial layers are conducive to stabilizing the phase transition of high-voltage cathodes while suppressing the dendritic growth on lithium metal or co-intercalation behavior in graphite anode.This TFF electrolyte enables LiCoO_(2)||Li batteries to achieve capacity maintenance over 79%after 400 cycles with high-rate of 5 C at an ultra-high voltage of 4.6 V,and an outstanding capacity exceeding 100 mA h g^(−1)even at a super-high current density of 20 C.Additionally,the Ah-level LiCoO_(2)||graphite pouch cells also exhibit high capacity retention and satisfactory safety performance even under fast charging.This work provides a novel research direction for the pursuit of high energy density non-flammable electrolytes.
基金supported by the Leading Edge Technology of Jiangsu Province (BK20220009, BK20202008)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Lithium-ion thermoelectrochemical cell(LTEC), featuring simultaneous energy conversion and storage, has emerged as promising candidate for low-grade heat harvesting. However, relatively poor thermosensitivity and heat-to-current behavior limit the application of LTECs using LiPF_6 electrolyte. Introducing additives into bulk electrolyte is a reasonable strategy to solve such problem by modifying the solvation structure of electrolyte ions. In this work, we develop a dual-salt electrolyte with fluorosurfactant(FS) additive to achieve high thermopower and durability of LTECs during the conversion of low-grade heat into electricity. The addition of FS induces a unique Li~+ solvation with the aggregated double anions through a crowded electrolyte environment,resulting in an enhanced mobility kinetics of Li~+ as well as boosted thermoelectrochemical performances. By coupling optimized electrolyte with graphite electrode, a high thermopower of 13.8 mV K^(-1) and a normalized output power density of 3.99 mW m^(–2) K^(–2) as well as an outstanding output energy density of 607.96 J m^(-2) can be obtained.These results demonstrate that the optimization of electrolyte by regulating solvation structure will inject new vitality into the construction of thermoelectrochemical devices with attractive properties.
基金supported by the National Natural Science Foundation of China(Grant nos.92372118,52072224)the Youth Innovation Team Project of Shandong Provincial Education Department(2021KJ093)+3 种基金the Natural Science Foundation of Shandong Province(ZR2020YQ35)the Qilu Young Scholar Funding of Shandong Universitythe Young Elite Scientists Sponsorship Program by CAST(YESS,2019QNRC001)the Natural Science Foundation of Shandong Provincial(ZR2023ZD52)。
文摘Li metal batteries(LMBs)offer signifi-cant potential as high energy density alternatives;nev-ertheless,their performance is hindered by the slow desolvation process of electrolytes,particularly at low temperatures(LT),leading to low coulombic efficiency and limited cycle stability.Thus,it is essential to opti-mize the solvation structure thereby achieving a rapid desolvation process in LMBs at LT.Herein,we introduce branch chain-rich diisopropyl ether(DIPE)into a 2.5 M Li bis(fluorosulfonyl)imide dipropyl ether(DPE)elec-trolyte as a co-solvent for high-performance LMBs at-20℃.The incorporation of DIPE not only enhances the disorder within the electrolyte,but also induces a steric hindrance effect form DIPE’s branch chain,excluding other solvent molecules from Li+solvation sheath.Both of these factors contribute to the weak interactions between Li^(+)and solvent molecules,effectively reducing the desolvation energy of the electrolyte.Consequently,Li(50μm)||LFP(mass loading~10 mg cm^(-2))cells in DPE/DIPE based electrolyte demonstrate stable performance over 650 cycles at-20℃,delivering 87.2 mAh g^(-1),and over 255 cycles at 25℃ with 124.8 mAh g^(-1).DIPE broadens the electrolyte design from molecular structure considera-tions,offering a promising avenue for highly stable LMBs at LT.
基金supported by grants from the Major Basic Research Projects of Shandong Natural Science Foundation(ZR2020ZD07)the Key Scientific and Technological Innovation Project of Shandong(2020CXGC010401).
文摘Aqueous zinc-ion batteries(AZIBs),known for their high safety,low cost,and environmental friendliness,have a wide range of potential applications in large-scale energy storage systems.However,the notorious dendrite growth and severe side reactions on the anode have significantly hindered their further practical development.Recent studies have shown that the solvation chemistry in the electrolyte is not only closely related to the barriers to the commercialization of AZIBs,but have also sparked a number of valuable ideas to address the challenges of AZIBs.Therefore,we systematically summarize and discuss the regulatory mechanisms of solvation chemistry in various types of electrolytes and the influence of the solvation environment on battery performance.The challenges and future directions for solvation strategies based on the electrolyte environment are proposed to improve their performance and expand their application in AZIBs.
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
基金supported by National Natural Science Foundation of China(Grant No.51872196)China Postdoctoral Science Foundation Special Fund for the Third Batch(Grant No.2021TQ0200),China Postdoctoral Science Foundation Project for the 71st Batch(Grant No.2022M712034)+1 种基金the Carbon Peaking and Carbon Neutrality Technology Innovation Special Fund of Jiangsu Province(Grant number:BE2022041)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant number:JDSX2022023)。
文摘Aluminum(Al),the most abundant metallic element on the earth crust,has been reckoned as a promising battery material for its the highest theoretical volume capacity(8046 mAh cm^(-3)).Being rechargeable in ionic liquid electrolytes,however,the Al anode and battery case suffer from corrosion.On the other hand,Al is irreversible in aqueous electrolyte with severe hydrogen evolution reaction.Here,we demonstrate a water-in-salt aluminum ion electrolyte(WISE)based on Al and lithium salts to tackle the above challenges.In the WISE system,water molecules can be confined within the Li^(+)solvation structures.This diminished Al^(3+)-H_(2)O interaction essentially eliminates the hydrolysis effect,effectively protecting Al anode from corrosion.Therefore,long-term Al plating/stripping can be realized.Furthermore,two types of high-performance full batteries have been demonstrated using copper hexacyanoferrate(CuHCF,a Prussian Blue Analogues)and LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM)as cathodes.The reversibility of Al anode laid the foundation for low cost rechargeable batteries suffering for large-scale energy storage.Broader context:Al batteries are expected to become a safe and sustainable alternative to lithium batteries.For decades,chase for a feasible Al secondary battery has not been successful.The key challenge is to find suitable cathode and electrolyte materials,together with which Al anode battery can function reversibly.Currently,fatal drawbacks have impeded the practical application of Al metal batteries(AMBs),such as sustained corrosion of Al anode and battery case in ionic liquid electrolytes,irreversibility issues as well as severe hydrogen evolution reaction during cycling in aqueous electrolyte.Therefore,electrolyte and their electrochemical kinetics play a vital role in the performance and environmental operating limitations of high-energy Al metal batteries.In this work,we demonstrate a nearly neutral Al ion water-in-salt electrolyte(WISE)to tackle the above challenges.The WISE shows excellent stability in the open atmosphere.The distinct solvation-sheath structure of Al^(3+)in the WISE system would protect Al metal anodes from corrosion and eliminate hydrogen evolution reaction effectively,further promoting the reversibility of Al metal anodes with dendrite-free morphology.Moreover,such a WISE exhibits superior compatibility with LiNi_(0.3)Co_(0.3)Mn_(0.3)O_(2)(NCM)and copper hexacyanoferrate(CuHCF)cathodes and long-term stabilities with high coulombic efficiency(CE)can be attained for full batteries with the WISE.The approach in this study can furnish an opportunity to develop reversible AMBs and lay the foundation for other potential multivalent-metalbased secondary batteries suffering from interface passivation and poor reversibility,which suggest the promise of multivalent metal batteries and their applications in large-scale energy storage.
基金financially National Natural Science Foundation of China (Grant No. 22209134)Fundamental Research Funds for the Central Universities, Southwest Minzu University (Grant No. ZYN2023003)+1 种基金Sichuan Science and Technology Program (Grant No. 2024NSFSC1155)Fundamental Research Funds for the Central Universities, Southwest Jiaotong University (Grant No. 2682023CX005)。
文摘The poor compatibility of ester electrolytes with lithium metal anode severely limits its use in high voltage lithium metal batteries(LMBs).In this work,a bidentate solvent 1,2-diethoxyethane(DEE) is introduced into ester electrolyte to regulate the ion-dipole interactions to enhance the solubility of LiNO_(3),which enables compatibility with Li anode and maintains the high voltage cathode stability.In the designed electrolyte,the steric effect of DEE facilitates the participation of NO_(3)^(-)and PF_6^(-)anions in the Li^(+) solvation structure,thus promoting the generation of inorganic-rich solid electrolyte interphase(SEI).And the low viscosity of DEE also ensures that the ester electrolyte poses good interracial wettability.As a result,our designed electrolyte enables the high-loading Li‖NCM622 and Li‖NCM811(^(3) mA h cm^(-2)) full cells to achieve stable cycling over 200 cycles,8 times longer than that of a conventional ester electrolyte.This work suggests that regulation of intermolecular interactions in conventional ester electrolytes is a scalable and effective approach to achieve excellent electrochemical performance of LMBs.
基金supported by the National Natural Science Foundation of China(No.52272198 and 52002122)the Project funded by China Postdoctoral Science Foundation(No.2021M690947).
文摘Aqueous Zn-ion batteries(AZIBs)have attracted increasing attention in next-generation energy storage systems due to their high safety and economic.Unfortunately,the side reactions,dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries.Here,we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a“catcher”to arrest active molecules(bound water molecules).The stable solvation structure of[Zn(H_(2)O)_(6)]^(2+)is capable of maintaining and completely inhibiting free water molecules.When[Zn(H_(2)O)_(6)]^(2+)is partially desolvated in the Helmholtz outer layer,the separated active molecules will be arrested by the“catcher”formed by the strong hydrogen bond N-H bond,ensuring the stable desolvation of Zn^(2+).The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm^(-2),Zn||V_(6)O_(13) full battery achieved a capacity retention rate of 99.2%after 10,000 cycles at 10 A g^(-1).This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
基金supported by the National Key Research and Development Programs(2021YFB2400400)Major Science and Technology Innovation Project of Hunan Province(2020GK10102020GK1014-4)+7 种基金National Natural Science Foundation of China(32201162)the 70th general grant of China Postdoctoral Science Foundation(2021M702947)Natural Science Foundation of Henan(232300420404)Key Scientific and Technological Project of Henan Province(232102320290,232102311156)Key Research Project Plan for Higher Education Institutions in Henan Province(24A150009,23B430011)Doctor Foundation of Henan University of Engineering(D2022002)the Science and Technology Innovation Program of Hunan Province(2023RC3154)the scientific research projects of Education Department of Hunan Province(23A0188)。
文摘Aqueous Zn metal batteries(AZMBs)with intrinsic safety,high energy density and low cost have been regarded as promising electrochemical energy storage devices.However,the parasitic reaction on metallic Zn anode and the incompatibility between electrode and electrolytes lead to the deterioration of electrochemical performance of AZMBs during the cycling.The critical point to achieve the stable cycling of AZMBs is to properly regulate the zinc ion solvated structure and transfer behavior between metallic Zn anode and electrolyte.In recent years,numerous achievements have been made to resolve the formation of Zn dendrite and interface incompatible issues faced by AZMBs via optimizing the sheath structure and transport capability of zinc ions at electrode-electrolyte interface.In this review,the challenges for metallic Zn anode and electrode-electrolyte interface in AZMBs including dendrite formation and interface characteristics are presented.Following the influences of different strategies involving designing advanced electrode structu re,artificial solid electrolyte interphase(SEI)on Zn anode and electrolyte engineering to regulate zinc ion solvated sheath structure and transport behavior are summarized and discussed.Finally,the perspectives for the future development of design strategies for dendrite-free Zn metal anode and long lifespan AZMBs are also given.
基金Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance,Grant/Award Number:22567616HNatural Science Foundation of Hebei Province of China,Grant/Award Number:B2020103028+3 种基金Science Fund for Creative Research Groups of the National Natural Science Foundation of China,Grant/Award Number:21921005National Key Research and Development Program of China,Grant/Award Number:2021YFB2400300Beijing Municipal Natural Science Foundation Project,Grant/Award Number:2222031National Natural Science Foundation of China,Grant/Award Numbers:52174281,21808228。
文摘The specific energy of Li metal batteries(LMBs)can be improved by using high‐voltage cathode materials;however,achieving long‐term stable cycling performance in the corresponding system is particularly challenging for the liquid electrolyte.Herein,a novel pseudo‐oversaturated electrolyte(POSE)is prepared by introducing 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl ether(TTE)to adjust the coordination structure between diglyme(G2)and lithium bis(trifluoromethanesulfonyl)imide(LiTFSI).Surprisingly,although TTE shows little solubility to LiTFSI,the molar ratio between LiTFSI and G2 in the POSE can be increased to 1:1,which is much higher than that of the saturation state,1:2.8.Simulation and experimental results prove that TTE promotes closer contact of the G2 molecular with Li^(+)in the POSE.Moreover,it also participates in the formation of electrolyte/electrode interphases.The electrolyte shows outstanding compatibility with both the Li metal anode and typical high‐voltage cathodes.Li||Li symmetric cells show a long life of more than 2000 h at 1 mA cm^(−2),1 mAh cm^(−2).In the meantime,Li||LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cell with the POSE shows a high reversible capacity of 134.8 mAh g^(−1 )after 900 cycles at 4.5 V,1 C rate.The concept of POSE can provide new insight into the Li^(+)solvation structure and in the design of advanced electrolytes for LMBs.
基金supported by the National Natural Science Foundation of China(22150710516,U1832218).
文摘Rechargeable magnesium metal batteries need an electrolyte that forms a stable and ionically conductive solid electrolyte interphase(SEI)on the anodes.Here,we used molecular dynamic simulation,density functional theory calculation,and X-ray photoelectron spectroscopy analysis to investigate the solvation structures and SEI compositions in electrolytes consisting of dual-salts,magnesium bis(trifluoromethanesulfonyl)imide(MgTFSI_(2)),and MgCl_(2),with different additives in 1,2-dimethoxyethane(DME)solvent.We found that the formed[Mg_(3)(μ-Cl)_(4)(DME)mTFSI_(2)](m=3,5)inner-shell solvation clusters in MgTFSI_(2)-MgCl_(2)/DME electrolyte could easily decompose and form a MgO-and MgF_(2)-rich SEI.Such electron-rich inorganic species in the SEI,especially MgF_(2),turned out to be detrimental for Mg plating/stripping.To reduce the MgF_(2)and MgO contents in SEI,we introduce an electron-deficient tri(2,2,2-trifluoroethyl)borate(TFEB)additive in the electrolyte.Mg//Mg cells using the MgTFSI_(2)-MgCl_(2)/DME-TFEB electrolyte could cycle stably for over 400 h with a small polarization voltage of~150 mV.Even with the presence of 800 ppm H_(2)O,the electrolyte with TFEB additive could still preserve its good electrochemical performance.The optimized electrolyte also enabled stable cycling and high-rate capability for Mg//Mo6S8 and Mg//CuS full cells,showing great potential for future applications.
基金supported by the National Natural Science Foundation of China(22279063,52001170)Tianjin Natural Science Foundation(22JCYBJC00590)the Fundamental Research Funds for the Central Universities.We thank the Haihe Laboratoryof Sustainable Chemical Transformations for financial support.
文摘The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.
基金financially supported by the National Natural Science Foundation of China(21972049,22272175)the National Key R&D Program of China(2022YFA1504002)+3 种基金the“Scientist Studio Funding”from Tianmu Lake Institute of Advanced Energy Storage Technologies Co.,Ltd.Dalian Supports High-Level Talent Innovation and Entrepreneurship Projects(2021RD14)the Dalian Institute of Chemical Physics(DICP I202213)the 21C Innovation Laboratory,Contemporary Ampere Technology Ltd.by project No.21C-OP-202208。
文摘Developing wide-temperature and high-safety lithium-ion batteries(LIBs)presents significant challenges attributed to the absence of suitable solvents possessing broad liquid range and non-flammability properties.γ-Butyrolactone(GBL)has emerged as a promising solvent;however,its incompatibility with graphite anode has hindered its application.This limitation necessitates a comprehensive investigation into the underlying mechanisms and potential solutions.In this study,we achieve a molecular-level understanding of the perplexing interphase formation process by employing in-situ spectroelectrochemical techniques and density function calculations.Our findings reveal that,even at high salt concentrations,GBL consistently occupies the primary Li^(+)solvation sheath,leading to extensive GBL decomposition and the formation of a high-impedance and inorganic-poor solid-electrolyte interphase(SEI)layer.Contrary to manipulating solvation structures,our research demonstrates that the utilization of filmforming additives with higher reduction potential facilitates the pre-establishment of a robust SEI film on the graphite anode.This approach effectively inhibits GBL decomposition and significantly enhances the battery's lifespan.This study provides the first reported intrinsic understanding of the unique GBLgraphite incompatibility and offers valuable insights for the development of wide-temperature and high-safety LIBs.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 81361140344 and 2136164), the National High Technology Research and Development Program of China (2015AA021002) and the Major National Scientific Instrument Development Project (No.21537812).
文摘Clindamycin phosphate (CP), an antibacterial agent, has been reported to form several solid-state forms. The crystal structures of two CP solvates, a dimethyl sulfoxide (DMSO) solvate and a methanol/water solvate (solvate V), have been determined by single crystal X-ray diffraction. The properties and transformations of these forms were characterized by powder X-ray diffraction, Single-crystal X-ray diffraction, differential scanning calorimetry, thermo gravimetric analysis, hot-stage microscopy, and dynamic vapor sorption. Very different hydrogen bonding networks exist among the host-host and host-solvent molecules in the two crystal structures, resulting in different moisture stabilities. The thermal stabilities of the two solvates upon heating and desolvation were also studied. When the temperature was above the boiling point of methanol, solvate V converted to a polymorphic phase after a one step desolvation process, whereas the desolvation temperature of the DMSO solvate was below the boiling point of DMSO. At the relative humidity above 43%, the DMSO solvate transformed to a hydrate at 25 ℃. In contrast, solvate V did not transform at any of the humidities studied.
基金supported by the National Natural Science Foundation of China (21875107, U1802256, and 22209204)Leading Edge Technology of Jiangsu Province (BK20220009), the Natural Science Foundation of Jiangsu Province (BK20221140)+2 种基金the China Postdoctoral Science Foundation (2022M713364)Jiangsu Specially Appointed Professors ProgramPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The solvation structure of Li^(+) in chemical prelithiation reagent plays a key role in improving the low initial Coulombic efficiency(ICE) and poor cycle performance of silicon-based materials. Never theless, the chemical prelithiation agent is difficult to dope active Li^(+) in silicon-based anodes because of their low working voltage and sluggish Li^(+) diffusion rate. By selecting the lithium–arene complex reagent with 4-methylbiphenyl as an anion ligand and 2-methyltetrahydrofuran as a solvent, the as-prepared micro-sized Si O/C anode can achieve an ICE of nearly 100%. Interestingly, the best prelithium efficiency does not correspond to the lowest redox half-potential(E_(1/2)), and the prelithiation efficiency is determined by the specific influencing factors(E_(1/2), Li^(+) concentration, desolvation energy, and ion diffusion path). In addition, molecular dynamics simulations demonstrate that the ideal prelithiation efficiency can be achieved by choosing appropriate anion ligand and solvent to regulate the solvation structure of Li^(+). Furthermore, the positive effect of prelithiation on cycle performance has been verified by using an in-situ electrochemical dilatometry and solid electrolyte interphase film characterizations.
基金supported by the National Key Research and Development Program of China(No.2022YFB2404800)。
文摘Ethylene carbonate(EC)is susceptible to the aggressive chemistry of nickel-rich cathodes,making it undesirable for high-voltage lithium-ion batteries(LIBs).The arbitrary elimination of EC leads to better oxidative tolerance but always incurs interfacial degradation and electrolyte decomposition.Herein,an EC-free electrolyte is deliberately developed based on gradient solvation by pairing solvation-protection agent(1,3,5-trifluorobenzene,F_(3)B)with propylene carbonate(PC)/methyl ethyl carbonate(EMC)formulation.F_(3)B keeps out of inner coordination shell but decomposes preferentially to construct robust interphase,inhibiting solvent decomposition and electrode corrosion.Thereby,the optimized electrolyte(1.1 M)with wide liquid range(-70–77℃)conveys decent interfacial compatibility and high-voltage stability(4.6 V for LiNi_(0.6)Mn_(0.2)Co_(0.2)O_(2),NCM622),qualifying reliable operation of practical NCM/graphite pouch cell(81.1%capacity retention over 600 cycles at 0.5 C).The solvation preservation and interface protection from F_(3)B blaze a new avenue for developing high-voltage electrolytes in next-generation LIBs.
基金supported by the National Natural Science Foundation of China (21925503, 21871149, 21835004, and 22075067)the Ministry of Education of China (B12015)+2 种基金Haihe Laboratory of Sustainable Chemical Transformations (CYZC202110)Hebei Natural Science Foundation (B2020201001)the Fundamental Research Funds for the Central Universities,Nankai University(020-63201046)。
文摘Rechargeable aqueous zinc(Zn) batteries hold great promise for large-scale energy storage,but their implementation is plagued by poor Zn reversibility and unsatisfactory low-temperature performance.Herein,we design a cell-nucleus structured electrolyte by introducing low-polarity 1,2-dimethoxyethane(DME) into dilute 1 M zinc trifluoromethanesulfonate(Zn(OTf)_(2)) aqueous solution,which features an OTf--rich Zn2^(+)-primary solvation sheath(PSS,inner nucleus) and the DMEmodulated Zn^(2+)-outer solvation sheath(outer layer).We find that DME additives with a low dosage do not participate in the Zn2+-PSS but reinforce the Zn-OTf-coordination,which guarantees good reaction kinetics under ultralow temperatures.Moreover,DME breaks the original H-bonding network of H2O,depressing the freezing point of electrolyte to-52.4℃.Such a cell-nucleus-solvation structure suppresses the H_(2)O-induced side reactions and forms an anion-derived solid electrolyte interphase on Zn and can be readily extended to 1,2-diethoxyethane.The as-designed electrolyte enables the Zn electrode deep cycling stability over 3500 h with a high depth-of-discharge of 51.3% and endows the Zn‖V_(2)O_(5)full battery with stable cycling over 1000 cycles at 40℃.This work would inspire the solvation structure design for low-temperature aqueous batteries.