The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th...The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.展开更多
Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and wellbeing. However, its limited aqueous so...Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and wellbeing. However, its limited aqueous solubility and low dissolution restrict its bioavailability.The aim of the study was therefore to improve the dissolution rate of K. parviflora extracted with dichloromethane(KPD) by solid dispersions. Different water-soluble polymers were applied to improve dissolution of KPD. The solid dispersions in different ratios were prepared by solvent evaporation method. Only hydroxypropyl methylcellulose(HPMC) and polyvinyl alcohol-polyethylene glycol grafted copolymer(PVA-co-PEG) could be used to produce homogeneous, powdered solid dispersions. Physical characterization by scanning electron microscopy, hot stage microscopy, differential scanning calorimetry and powder X-ray diffractometry, in comparison with corresponding physical mixtures, showed the changes in solid state during the formation of solid dispersions. Dissolution of a selected marker,5,7,4′-trimethoxyflavone(TMF), from KPD/HPMC and KPD/PVA-co-PEG solid dispersions was significantly improved, compared with pure KPD. The dissolution enhancement by solid dispersion was influenced by both type and content of polymers. The stability of KPD/HPMC and KPD/PVA-co-PEG solid dispersions was also good after 6-month storage in both longterm and accelerated conditions. These results identified that the KPD/HPMC and KPD/PVAco-PEG solid dispersions were an effective new approach for pharmaceutical application of K. parviflora.展开更多
This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in wate...This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent eva poration method.The method provides outstanding features,including being time-saving,of high-yield and able for continuous production,in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres.It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method.The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microsphere s.展开更多
This work presents a generic strategy to create a series of metal mercaptides complexes via coordination selfassembly between transition metals(Mn,Cu,Co,Fe,and Ni)and cysteine(Cys)by forming the sulfur-metal bridges.T...This work presents a generic strategy to create a series of metal mercaptides complexes via coordination selfassembly between transition metals(Mn,Cu,Co,Fe,and Ni)and cysteine(Cys)by forming the sulfur-metal bridges.This strategy involves dissolving metal chlorides and Cys into deep eutectic solvents(DES),followed by the precipitation of metal mercaptides complexes(such as Cys-Mn)by adding water as an antisolvent,where DES serves as the solvent,shape directing,and capping agent,thereby preventing the formation of other metal impurities.Interestingly,the prepared complexes possess both laccase and peroxidase-like properties,allowing the design of a technique for the detection of L-3,4-dihydroxyphenylalanine(L-DOPA)and uric acid,respectively.The prepared Cys-Mn can linearly oxidize L-DOPA with its concentrations from 0.1 to 130μM and the detection limit was calculated to be 75.5 n M.Additionally,the Cys-Mn can mimic the activity of peroxidase towards oxidization of o-phenylenediamine at neutral p H,allowing single-step and one-pot cascade reactions for visual and fluorometric measurements of uric acid(UA)that could work in the range of 0.2-500μM UA with a detection limit of 0.06μM and 0.054μМ,respectively.The assay was successful in detecting UA in serum and urine samples with relative standard deviation(RSD)ranging from 7.3%to 10.2%and 3.0%-8.5%respectively,suggesting that it may prove useful in medical diagnostic testing.展开更多
Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K...Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations.展开更多
Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this is...Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this issue,in this study,the Acid solvent evaporation(AsE)method has been proposed as a potential method to remove residual lithium while promoting the formation of a new LiNO_(3)-derived coating layer on the cathode surface.The reduction of residual lithium using the ASE method and the construction of a LiNO_(3)-derived coating layer suppresses gas evolution caused by the side effects of the electrolyte,improves electrochemical performance,and improves thermal stability by facilitating the smooth movement of lithium ions.Furthermore,the structural stability and resistance change due to the LiNO_(3)-derived coating layer effects is guaranteed through cycling and DCIR of the pouch cell.As a result,compared to Pristine,the capacity retention of coin cells increased by 8%after 100 cycles,and pouch cells increased by 25%after 160 cycles.In addition,after cycling the pouch cell,CO_(2) gas has significantly reduced by about 30%compared to Pristine using gas chromatography.The ASE method effectively forms a robust LiNO_(3)-derived coating layer on the cathode active material,which helps minimize electrolyte reactivity,suppress ,CO_(2) emissions,enhance surface structure stability,improve thermal stability,and improveoverallbatteryperformance.展开更多
[Objectives]To prepare 20(S)-protopanaxadiol PLGA nanoparticles(20(S)-PPD-PLGA-NPs).[Methods]20(S)-PPD-PLGA-NPs were prepared by emulsion solvent evaporation method,and the optimal formulation was screened by Box-Behn...[Objectives]To prepare 20(S)-protopanaxadiol PLGA nanoparticles(20(S)-PPD-PLGA-NPs).[Methods]20(S)-PPD-PLGA-NPs were prepared by emulsion solvent evaporation method,and the optimal formulation was screened by Box-Behnken experiment with particle size and drug loading as the indicators through single factor experiment,and the drug release in vitro was carried out.[Results]The average diameter of the nanoparticles was(119.60±2.29)nm and the polydispersity index was(0.12±0.02),the size was uniform.The encapsulation efficiency and drug loading of protopanaxadiol were(87.99±1.29)%and(14.86±0.25)%,respectively.[Conclusions]The 20(S)-PPD-PLGA-NPs were successfully prepared by emulsion solvent evaporation method,and the 20(S)-PPD-PLGA-NPs had good stability,to lay a foundation for the study of 20(S)-PPD-PLGA-NPs in vitro and in vivo.展开更多
基金supported by the National Natural Science Foundation of China(22078211)the China Postdoctoral Science Foundation(2022M721115).
文摘The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly.
文摘Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and wellbeing. However, its limited aqueous solubility and low dissolution restrict its bioavailability.The aim of the study was therefore to improve the dissolution rate of K. parviflora extracted with dichloromethane(KPD) by solid dispersions. Different water-soluble polymers were applied to improve dissolution of KPD. The solid dispersions in different ratios were prepared by solvent evaporation method. Only hydroxypropyl methylcellulose(HPMC) and polyvinyl alcohol-polyethylene glycol grafted copolymer(PVA-co-PEG) could be used to produce homogeneous, powdered solid dispersions. Physical characterization by scanning electron microscopy, hot stage microscopy, differential scanning calorimetry and powder X-ray diffractometry, in comparison with corresponding physical mixtures, showed the changes in solid state during the formation of solid dispersions. Dissolution of a selected marker,5,7,4′-trimethoxyflavone(TMF), from KPD/HPMC and KPD/PVA-co-PEG solid dispersions was significantly improved, compared with pure KPD. The dissolution enhancement by solid dispersion was influenced by both type and content of polymers. The stability of KPD/HPMC and KPD/PVA-co-PEG solid dispersions was also good after 6-month storage in both longterm and accelerated conditions. These results identified that the KPD/HPMC and KPD/PVAco-PEG solid dispersions were an effective new approach for pharmaceutical application of K. parviflora.
基金financially supported by National Natural Science Foundation of China (22068018, 21466016 and 51863011)Natural Science Foundation of Yunnan Province (2016FB024)Yunnan Ten Thousand Talents Plan Young & Elite Talents Project。
文摘This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent eva poration method.The method provides outstanding features,including being time-saving,of high-yield and able for continuous production,in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres.It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method.The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microsphere s.
基金supported by the National Natural Science Foundation of China(Nos.21822407 and 22074154)the Chinese Academy of Sciences-the World Academy of Sciences(CAS-TWAS)President’s Fellowship Program+2 种基金CAS“Light of West China”ProgramYouth Innovation Promotion Association CAS(2021420)the Foundation for Sci&Tech Research Project of Gansu Province(20JR5RA573,20JR10RA045)
文摘This work presents a generic strategy to create a series of metal mercaptides complexes via coordination selfassembly between transition metals(Mn,Cu,Co,Fe,and Ni)and cysteine(Cys)by forming the sulfur-metal bridges.This strategy involves dissolving metal chlorides and Cys into deep eutectic solvents(DES),followed by the precipitation of metal mercaptides complexes(such as Cys-Mn)by adding water as an antisolvent,where DES serves as the solvent,shape directing,and capping agent,thereby preventing the formation of other metal impurities.Interestingly,the prepared complexes possess both laccase and peroxidase-like properties,allowing the design of a technique for the detection of L-3,4-dihydroxyphenylalanine(L-DOPA)and uric acid,respectively.The prepared Cys-Mn can linearly oxidize L-DOPA with its concentrations from 0.1 to 130μM and the detection limit was calculated to be 75.5 n M.Additionally,the Cys-Mn can mimic the activity of peroxidase towards oxidization of o-phenylenediamine at neutral p H,allowing single-step and one-pot cascade reactions for visual and fluorometric measurements of uric acid(UA)that could work in the range of 0.2-500μM UA with a detection limit of 0.06μM and 0.054μМ,respectively.The assay was successful in detecting UA in serum and urine samples with relative standard deviation(RSD)ranging from 7.3%to 10.2%and 3.0%-8.5%respectively,suggesting that it may prove useful in medical diagnostic testing.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB932804)the National Natural Science Foundation of China(Grant Nos.91227115,11421063,11504431,and 21503275)+1 种基金the Fundamental Research Funds for Central Universities of China(Grant No.15CX02025A)the Application Research Foundation for Post-doctoral Scientists of Qingdao City,China(Grant No.T1404096)
文摘Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KIIIIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(2021R1F1A1055946)SolarEdge Technologies Korea(GCU-202203070002)。
文摘Ni-rich layered oxides in lithium-ion batteries have problems with gas generation and electrochemical performance reduction due to residual lithium's reaction on the surface with the electrolyte.To address this issue,in this study,the Acid solvent evaporation(AsE)method has been proposed as a potential method to remove residual lithium while promoting the formation of a new LiNO_(3)-derived coating layer on the cathode surface.The reduction of residual lithium using the ASE method and the construction of a LiNO_(3)-derived coating layer suppresses gas evolution caused by the side effects of the electrolyte,improves electrochemical performance,and improves thermal stability by facilitating the smooth movement of lithium ions.Furthermore,the structural stability and resistance change due to the LiNO_(3)-derived coating layer effects is guaranteed through cycling and DCIR of the pouch cell.As a result,compared to Pristine,the capacity retention of coin cells increased by 8%after 100 cycles,and pouch cells increased by 25%after 160 cycles.In addition,after cycling the pouch cell,CO_(2) gas has significantly reduced by about 30%compared to Pristine using gas chromatography.The ASE method effectively forms a robust LiNO_(3)-derived coating layer on the cathode active material,which helps minimize electrolyte reactivity,suppress ,CO_(2) emissions,enhance surface structure stability,improve thermal stability,and improveoverallbatteryperformance.
文摘[Objectives]To prepare 20(S)-protopanaxadiol PLGA nanoparticles(20(S)-PPD-PLGA-NPs).[Methods]20(S)-PPD-PLGA-NPs were prepared by emulsion solvent evaporation method,and the optimal formulation was screened by Box-Behnken experiment with particle size and drug loading as the indicators through single factor experiment,and the drug release in vitro was carried out.[Results]The average diameter of the nanoparticles was(119.60±2.29)nm and the polydispersity index was(0.12±0.02),the size was uniform.The encapsulation efficiency and drug loading of protopanaxadiol were(87.99±1.29)%and(14.86±0.25)%,respectively.[Conclusions]The 20(S)-PPD-PLGA-NPs were successfully prepared by emulsion solvent evaporation method,and the 20(S)-PPD-PLGA-NPs had good stability,to lay a foundation for the study of 20(S)-PPD-PLGA-NPs in vitro and in vivo.