Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performa...Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performance and good resistance to organic solvents are urgently needed for a more complicated situation in practical. In this study, a kind of solvent-resistant nanofiltration (SRNF) membrane was fabricated via interfacial polymerization on a laboratory optimized cellulose acetate (CA) basic membrane. The effects of interfacial polymerization parameters, such as water phase concentration, immersed time in the water phase and in the organic phase, on the pure water flux and rejection rate of C-2R yellow dyestuffs were investigated. A highest dye rejection rate of 72.9% could be obtained by water phase solution containing 1% m-xylylenediamine (mXDA) and organic phase solution with 0.2% trimesoyl chloride (TMC) under immersed time in water phase of 6 minutes and in organic phase of 40 seconds. This membrane demonstrated better resistance to methyl alcohol compared to commercial membrane. This study may offer an avenue to develop a solvent-resistant nanofiltration membrane.展开更多
Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promisi...Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promising answer. This is because SRNF is a membrane-based process which offers the key advantages of high efficacy and low energy intensity separation. In particular, polymer-based membranes can offer compelling opportunities for SRNF with unprecedented cost-effectiveness. As a result, intensive research efforts have been devoted into developing novel polymer-based membranes with solvent-resistant capacities as well as exploring potential applications in different types of industries. In this review, we aim to give an overview of the recent progress in the development of the state-of-the-art polymer-based membranes for SRNF in the first section. Emerging nanomaterials for mixed matrix and thin film nanocomposite membranes are also covered in this section. This is followed by a discussion on the current status of membrane engineering and SRNF membrane commercialization. In the third section, we highlight recent efforts in adopting SRNF for relevant industrial applications such as food, bio-refinery, petrochemical, fine chemical and pharmaceutical industries followed by separations of enantiomers in stereochemistry, homogeneous catalysis and ionic liquids. Finally, we offer a perspective and provide deeper insights to help shape future research direction in this very important field of SRNF.展开更多
Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection ra...Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.展开更多
Nanofiltration membranes are the core elements for nanofiltration process. The chemical structures and physical properties of nanofiltration membranes determine water permeability, solute selectivity, mechanical/therm...Nanofiltration membranes are the core elements for nanofiltration process. The chemical structures and physical properties of nanofiltration membranes determine water permeability, solute selectivity, mechanical/thermal stability, and antifouling properties, which greatly influence the separation efficiency and operation cost in nanofiltration applications. In recent years, a great progress has been made in the development of high performance nanofiltration membranes based on nanomaterials. Considering the increasing interest in this field, this paper reviews the recent studies on the nanofiltration membranes comprising various nanomaterials, including the metal and metal oxide nanoparticles, carbon-based nanomaterials, metal–organic frameworks(MOFs), water channel proteins, and organic micro/nanoparticles. Finally, a perspective is given on the further exploitation of advanced nanomaterials and novel strategy for fabricating nano-based nanofiltration membranes. Moreover,the development of precision instruments and simulation techniques is necessary for the characterization of membrane microstructure and investigation of the separation and antifouling mechanism of nanofiltration membranes prepared with nanomaterials.展开更多
Thin film composite(TFC) membranes represent a highly promising platform for efficient nanofiltration(NF)processes. However, the improvement in permeance is impeded by the substrates with low permeances. Herein,highly...Thin film composite(TFC) membranes represent a highly promising platform for efficient nanofiltration(NF)processes. However, the improvement in permeance is impeded by the substrates with low permeances. Herein,highly permeable gradient phenolic membranes with tight selectivity are used as substrates to prepare TFC membranes with high permeances by the layer-by-layer assembly method. The negatively charged phenolic substrates are alternately assembled with polycation polyethylenimine(PEI) and polyanion poly(acrylic acid)(PAA)as a result of electrostatic interactions, forming thin and compact PEI/PAA layers tightly attached to the substrate surface. Benefiting from the high permeances and tight surface pores of the gradient nanoporous structures of the substrates, the produced PEI/PAA membranes exhibit a permeance up to 506 L? m-2?h-1?MPa-1, which is ~2–10 times higher than that of other membranes with similar rejections. The PEI/PAA membranes are capable of retaining N 96.1% of negatively charged dyes following the mechanism of electrostatic repulsion. We demonstrate that the membranes can also separate positively and neutrally charged dyes from water via other mechanisms.This work opens a new avenue for the design and preparation of high-flux NF membranes, which is also applicable to enhance the permeance of other TFC membranes.展开更多
In this study,a quantitative performance of three commercial polyamide nanofiltration(NF) membranes(i.e.,NF,NF90,and NF270) for phosphorus removal under different feed conditions was investigated.The experiments were ...In this study,a quantitative performance of three commercial polyamide nanofiltration(NF) membranes(i.e.,NF,NF90,and NF270) for phosphorus removal under different feed conditions was investigated.The experiments were conducted at different feed phosphorus concentrations(2.5,5,10,and 15 mg·L^-1) and elevated pHs(pH 1.5,5,10,and 13.5) at a constant feed pressure of 1 MPa using a dead-end filtration cell.Membrane rejection against total phosphorus generally increased with increasing phosphorus concentration regardless of membrane type.In contrast,the permeate flux for all the membranes only decreased slightly with increasing phosphorus concentration.The results also showed that the phosphorus rejections improved while water flux remained almost unchanged with increasing feed solution pH.When the three membranes were exposed to strong pHs(pH 1.5 and 13.5) for a longer duration(up to 6 weeks)it was found that the rejection capability and water flux of the membranes remained very similar throughout the duration,except for NF membrane with marginal decrement in phosphorus rejection.Adsorption study also revealed that more phosphorus was adsorbed onto the membrane structure at alkaline conditions(pH 10 and 13.5) compared to the same membranes tested at lower pHs(pH 1.5 and 5).In eonelusion,NF270 membrane outperformed Nf and NF90 membranes owing to its desirable performance of water flux and phosphorus rejection particularly under strong alkali solution.The NF270 membrane achieved 14.0 L·m^-2·h^-1 and 96.5% rejection against 10 mg·L^-1 phosphorus solution with a pH value of 13.5 at the applied pressure of 1 MPa.展开更多
In the face of human society's great requirements for health industry,and the much stricter safety and quality standards in the biomedical industry,the demand for advanced membrane separation technologies continue...In the face of human society's great requirements for health industry,and the much stricter safety and quality standards in the biomedical industry,the demand for advanced membrane separation technologies continues to rapidly grow in the world.Nanofiltration(NF)and reverse osmosis(RO)as the highefficient,low energy consumption,and environmental friendly membrane separation techniques,show great promise in the application of biomedical separation field.The chemical compositions,microstructures and surface properties of NF/RO membranes determine the separation accuracy,efficiency and operation cost in their applications.Accordingly,recent studies have focused on tuning the structures and tailoring the performance of NF/RO membranes via the design and synthesis of various advanced membrane materials,and exploring universal and convenient membrane preparation strategies,with the objective of promoting the better and faster development of NF/RO membrane separation technology in the biomedical separation field.This paper reviews the recent studies on the NF/RO membranes constructed with various materials,including the polymeric materials,different dimensional inorganic/organic nanomaterials,porous polymeric materials and metal coordination polymers,etc.Moreover,the influence of membrane chemical compositions,interior microstructures,and surface characteristics on the separation performance of NF/RO membranes,are comprehensively discussed.Subsequently,the applications of NF/RO membranes in biomedical separation field are systematically reported.Finally,the perspective for future challenges of NF/RO membrane separation techniques in this field is discussed.展开更多
N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone ...N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone (PSF) composite NF membranes. The permeate flux and the removal efficiencies of the resulting NF membranes for the color, chemical oxygen demand (CODcr), total organic carbon (TOC), and conductivity of the fermentation effluent were investigated in relation to the driving pressure, the feed flow, and the operation time. The permeate flux and the removal efficiencies were found to increase with the increase of the driving pressure or the feed flow. At 0.40 MPa and ambient temperature the removal efficiencies were 95.5%, 70.7%, 72.6%, and 31.6% for color, CODcr, TOC, and conductivity, respectively. The membrane was found to be stable over a 10-h ooeration for the fermentation effluent treatment.展开更多
Positively charged composite nanofiltration (NF) membranes were prepared through interfacial polymerization of poly[2-(N,N-dimethyl amino)ethyl methacrylate](PDMAEMA) on porous polysulfone (PSF) substrate memb...Positively charged composite nanofiltration (NF) membranes were prepared through interfacial polymerization of poly[2-(N,N-dimethyl amino)ethyl methacrylate](PDMAEMA) on porous polysulfone (PSF) substrate membranes. The effects of pH on swelling ratio (SR) of the pure crosslinked PDMAEMA membrane and on separation performances of the composite NF membrane were investigated. The results show that the quaternized amino groups produced through interfacial polymerization technique are soluble in both phases, which accelerate the crosslinking reaction as self-catalysts. The swelling/contracting behavior of the pure crosslinked PDMAEMA exhibited a well reversible pH sensitive property. Importantly, the rejection and flux of the composite NF membrane show pH-sensitive behavior in NF process. Furthermore, with the help of a relatively novel method to measure membrane conduction, the true zeta potentials calculated on the basis of the streaming potential measurements proved the pH-sensitive behavior of the NF membrane.展开更多
Inorganic nanofiltration(NF)membranes as a new kind of membranes appeared a few years ago.Thisreview presents the progress in inorganic NF membranes during recent years.Synthesis,characterization,performance,and appli...Inorganic nanofiltration(NF)membranes as a new kind of membranes appeared a few years ago.Thisreview presents the progress in inorganic NF membranes during recent years.Synthesis,characterization,performance,and application of inorganic NF membranes are emphatically introduced,and the trends of devel-opment are also discussed.展开更多
This paper reports the effect of sol size on nanofiltration performances of sol–gel derived microporous zirconia membranes. Microstructure, pure water flux, molecular weight cut-off(MWCO) and salt retention of zircon...This paper reports the effect of sol size on nanofiltration performances of sol–gel derived microporous zirconia membranes. Microstructure, pure water flux, molecular weight cut-off(MWCO) and salt retention of zirconia membranes derived from zirconia sols with different sizes were characterized. Thermal evolution, phase composition, microstructure and chemical stability of unsupported zirconia membranes(powder) were determined by thermogravimetric and differential thermal analysis, X-ray diffraction, nitrogen adsorption–desorption and static solubility measurements. Results show that nanofiltration performance of zirconia membranes is highly dependent on sol size. The sol with an average size of 3.8 nm, which is smaller than the pore size of the γ-Al2O3support(pore size: 5–6 nm), forms a discontinuous zirconia separation layer because of excessive penetration of sol into the support. This zirconia membrane displays a MWCO value towards polyethylene glycol higher than 4000 Da. A smooth and defect-free zirconia membrane with a MWCO value of 1195 Da(pore size: 1.75 nm) and relative high retention rates towards Mg Cl2(76%) and Ca Cl2(64%) was successfully fabricated by dip-coating the sol with an appropriate size of 8.6 nm. Zirconia sol with an average size of 12 nm exhibits colloidal nature and forms a zirconia membrane with a MWCO value of 2332 Da(pore size: 2.47 nm). This promising microporous zirconia membrane presents sufficiently high chemical stability in a wide p H range of 1–12.展开更多
A selfmade positively charged nanofiltration (NF) membrane was used to treat textile dye effluent to generate water for reuse, and the factors affecting nanofiltration process such as operating pressure, feed flow a...A selfmade positively charged nanofiltration (NF) membrane was used to treat textile dye effluent to generate water for reuse, and the factors affecting nanofiltration process such as operating pressure, feed flow and membrane cleaning were investigated. With an applied pressure of 1.0 MPa and a feed flow of 40 L/h, this NF membrane has a removal of 93.3% for CODor and a reduction of approximately 51.0% in TDS, salinity and conductivity achieving the chroma removal of 100%. The permeate obtained through this membrane is suitable for recycling. Moreover, the membrane could be reused after being cleaned with 1% NaOH solution.展开更多
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(d...The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.展开更多
Effective extraction of lithium from high Mg2+/Li+ratio brine lakes is of great challenge.In this work,organic–inorganic hybrid silica nanofiltration(NF)membranes were prepared by dip-coating a 1,2-bis(triethoxysilyl...Effective extraction of lithium from high Mg2+/Li+ratio brine lakes is of great challenge.In this work,organic–inorganic hybrid silica nanofiltration(NF)membranes were prepared by dip-coating a 1,2-bis(triethoxysilyl)ethane(BTESE)-derived separation layer on tubular TiO2 support,for efficient separation of LiC l and MgCl2 salt solutions.We found that the membrane calcinated at 400°C(M1–400)could exhibit a narrow pore size distribution(0.63–1.66 nm)owing to the dehydroxylation and the thermal degradation of the organic bridge groups.All as-prepared membranes exhibited higher rejections to LiCl than to MgCl2,which was attributed to the negative charge of the membrane surfaces.The rejection for LiCl and MgCl2 followed the order:LiCl N MgCl2,revealing that Donnan exclusion effect dominated the salt rejection mechanism.In addition,the triplecoated membrane calcined at 400°C(M3–400)exhibited a permeability of about 9.5 L·m-2·h-1·bar-1 for LiCl or MgCl2 solutions,with rejections of 74.7%and 20.3%to LiCl and MgCl2,respectively,under the transmembrane pressure at 6 bar.Compared with the previously reported performance of NF membranes for Mg2+/Li+separation,the overall performance of M3–400 is highly competitive.Therefore,this work may provide new insight into designing robust silica-based ceramic NF membranes with negative charge for efficient lithium extraction from salt lakes.展开更多
A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission sc...A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission scanning electron microcopy ( FESEM), atomic force micrograph ( AFM ) and contact angle (CA) of pure water on PA and PSF substrate were employed to characterize the chemical and physical properties of membranes. The PAMAM concentration, retention of salt solutions and organics were studied on the performance of the NF membrane. From the analyses of SEM and AFM, the polyamide active skin layers of the composite membranes are dense, rough, and finely dispersed nodular structures, packed tightly by the spherical globules. The contact angle of PA nanofitration membrane decreased after polymerization. The higher PAMAM concentra- tion can result in lower flux and higher rejection. The salt rejection of PA membranes decreases in the order K2 SO4 〉 Na2 SO4 〉 MgSQ 〉 MgC12 〉 CaC12 〉 NaC1, which indicates that the resulting membranes is nagatively charged. The pH increases from 3 to 10 in the feed resulting in the decrease of the flux and the increase of the rejection for NazSO4 solution. The molecular weight cut off (MWCO) of the composite NF membrane is nearly 860 kg/mol. The resulted PA membrane can be used to seoarate small organics and salt solutions.展开更多
Improvement strength is beneficial to the popularization of hollow fiber nanofiltration(NF) membrane.The tri-channel hollow fiber NF membrane was prepared by interfacial polymerization(IP).The high strength tri-channe...Improvement strength is beneficial to the popularization of hollow fiber nanofiltration(NF) membrane.The tri-channel hollow fiber NF membrane was prepared by interfacial polymerization(IP).The high strength tri-channel hollow fiber ultrafiltration(UF) membrane were used as the support membrane,m-phenylenedianline(m-PDA),and polyethylenimine(PEI) were used as aqueous phase monomer,and trimesoyl chloride(TMC) was used as organic phase monomer.Fourier transform infrared spectroscopy(FTIR),scanning electron microscope(SEM),and gas sorption analyzer(GSA) were applied in structural analysis of NF membrane.Polymer FTIR illustrates the IP occurrence between aqueous phase monomer and organic phase monomer.The SEM images of NF membrane show the formation of a thin dense layer on surface of support membrane after IP.The flux(J) of optimal NF membrane is 11.2 L·m-2· h-1 at the 0.35 MPa operating pressure.Its retention(R) for NaCl,Na2SO4,MgCl2,Xylenol orange,and Neutral red is 17.4%,30.2%,16.1%,94.3%,and 51.0%,respectively.The NF membrane is on negative charge and its pore radius distributes between 0.3-2.0 nm.展开更多
Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and perme...Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.展开更多
Using Donnan Steric Partitioning Model(DSPM),the data for the rejection of four salts having common co-ion(LiCl, NaCl,KCl,Na2SO4)were obtained and they show the characters of the polyethersulfone(PES)nanofiltration(NF...Using Donnan Steric Partitioning Model(DSPM),the data for the rejection of four salts having common co-ion(LiCl, NaCl,KCl,Na2SO4)were obtained and they show the characters of the polyethersulfone(PES)nanofiltration(NF)membrane in terms of three parameters:an effective pore radius(rp),the ratio of effective thickness over porosity(λ/Ak)and an effective charge density(X).Good agreement between experimental data and prediction data using the three parameters mentioned above was obtained.A theoretical model was developed to predict the transport performance of electrolyte through the hollow fiber composite NF membrane.The model prediction is in good agreement with experimental results based on the method by modern numerical solution.展开更多
A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) via in situ interfacial polymerization.The effects of the generation number and concentration of PAMA...A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) via in situ interfacial polymerization.The effects of the generation number and concentration of PAMAM on the properties of NF membranes were discussed.Fourier transform infrared spectroscopy (FTIR-ATR),atomic force micrgscopy (AFM),scanning electron microscopy (SEM) and contact angle measurements were employed to characterize the resulting membranes.The nanofiltration performances were evalua...展开更多
文摘Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performance and good resistance to organic solvents are urgently needed for a more complicated situation in practical. In this study, a kind of solvent-resistant nanofiltration (SRNF) membrane was fabricated via interfacial polymerization on a laboratory optimized cellulose acetate (CA) basic membrane. The effects of interfacial polymerization parameters, such as water phase concentration, immersed time in the water phase and in the organic phase, on the pure water flux and rejection rate of C-2R yellow dyestuffs were investigated. A highest dye rejection rate of 72.9% could be obtained by water phase solution containing 1% m-xylylenediamine (mXDA) and organic phase solution with 0.2% trimesoyl chloride (TMC) under immersed time in water phase of 6 minutes and in organic phase of 40 seconds. This membrane demonstrated better resistance to methyl alcohol compared to commercial membrane. This study may offer an avenue to develop a solvent-resistant nanofiltration membrane.
基金funding support from the Singapore Economic Development Board to Singapore Membrane Technology Center
文摘Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promising answer. This is because SRNF is a membrane-based process which offers the key advantages of high efficacy and low energy intensity separation. In particular, polymer-based membranes can offer compelling opportunities for SRNF with unprecedented cost-effectiveness. As a result, intensive research efforts have been devoted into developing novel polymer-based membranes with solvent-resistant capacities as well as exploring potential applications in different types of industries. In this review, we aim to give an overview of the recent progress in the development of the state-of-the-art polymer-based membranes for SRNF in the first section. Emerging nanomaterials for mixed matrix and thin film nanocomposite membranes are also covered in this section. This is followed by a discussion on the current status of membrane engineering and SRNF membrane commercialization. In the third section, we highlight recent efforts in adopting SRNF for relevant industrial applications such as food, bio-refinery, petrochemical, fine chemical and pharmaceutical industries followed by separations of enantiomers in stereochemistry, homogeneous catalysis and ionic liquids. Finally, we offer a perspective and provide deeper insights to help shape future research direction in this very important field of SRNF.
基金supported by grants from the National Natural Science Foundation of China (41662004)the Jiangxi Graduate Innovation Fund (YC2021-S557),China。
文摘Organic solvent nanofiltration(OSN)membranes have a great application prospect in organic solvent separation,but the development of OSN membranes is mainly restricted by trade-off between permeability and rejection rate.In this work,a TA/Fe^(3+)polymer was introduced into polyetherimide(PEI)ultrafiltration membranes crosslinked with hexamethylene diamine as the intermediate layer,and OSN membranes with high separation performance and solvent permeability were obtained through interfacial polymerization and solvent activation.The interlayer with high surface hydrophilicity and a fixed pore structure controlled the adsorption/diffusion of the amine monomer during interfacial polymerization,forming a smooth(average surface roughness<5.5 nm),ultra-thin(separation layer thickness reduced from 150 to 16 nm)and dense surface structure polyamide(PA)layer.The PA-Fe^(3+)_3-HDA/PEI membrane retained more than 94%of methyl blue(BS)in 0.1 g·L^(-1)BS ethanol solution at 0.6 MPa,and the ethanol permeation reached 28.56 L^(-1)·m^(-2)·h^(-1).The average flux recovery ratio(FRR)of PA-Fe^(3+)_(3)-HDA/PEI membrane was found to be 84%,which has better fouling resistance than PA-HDA/PEI membrane,and it was found to have better stability performance through different solvent immersion experiments and continuous operation in 0.1 g·L^(-1)BS ethanol solution.Compared with thin-film composite nanofiltration membranes,the PA-Fe^(3+)_(3)-HDA/PEI membrane can be manufactured from an economical and environment-friendly method and overcomes the trade-off between permeability and rejection rate,showing great application potential in organic solvent separation systems.
基金Supported by the National Natural Science Foundation of China(21306163)the National Basic Research Program of China(2015CB655303)
文摘Nanofiltration membranes are the core elements for nanofiltration process. The chemical structures and physical properties of nanofiltration membranes determine water permeability, solute selectivity, mechanical/thermal stability, and antifouling properties, which greatly influence the separation efficiency and operation cost in nanofiltration applications. In recent years, a great progress has been made in the development of high performance nanofiltration membranes based on nanomaterials. Considering the increasing interest in this field, this paper reviews the recent studies on the nanofiltration membranes comprising various nanomaterials, including the metal and metal oxide nanoparticles, carbon-based nanomaterials, metal–organic frameworks(MOFs), water channel proteins, and organic micro/nanoparticles. Finally, a perspective is given on the further exploitation of advanced nanomaterials and novel strategy for fabricating nano-based nanofiltration membranes. Moreover,the development of precision instruments and simulation techniques is necessary for the characterization of membrane microstructure and investigation of the separation and antifouling mechanism of nanofiltration membranes prepared with nanomaterials.
基金Supported by the National Basic Research Program of China(2015CB655301)the Natural Science Foundation of China(21825803)+2 种基金and the Natural Science Foundation of Jiangsu Province(BK20150063)the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutionsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Thin film composite(TFC) membranes represent a highly promising platform for efficient nanofiltration(NF)processes. However, the improvement in permeance is impeded by the substrates with low permeances. Herein,highly permeable gradient phenolic membranes with tight selectivity are used as substrates to prepare TFC membranes with high permeances by the layer-by-layer assembly method. The negatively charged phenolic substrates are alternately assembled with polycation polyethylenimine(PEI) and polyanion poly(acrylic acid)(PAA)as a result of electrostatic interactions, forming thin and compact PEI/PAA layers tightly attached to the substrate surface. Benefiting from the high permeances and tight surface pores of the gradient nanoporous structures of the substrates, the produced PEI/PAA membranes exhibit a permeance up to 506 L? m-2?h-1?MPa-1, which is ~2–10 times higher than that of other membranes with similar rejections. The PEI/PAA membranes are capable of retaining N 96.1% of negatively charged dyes following the mechanism of electrostatic repulsion. We demonstrate that the membranes can also separate positively and neutrally charged dyes from water via other mechanisms.This work opens a new avenue for the design and preparation of high-flux NF membranes, which is also applicable to enhance the permeance of other TFC membranes.
基金Supported by the Ministry of Education(MoE)Malaysia to Universiti Teknologi Malaysia(UTM)under the grant of Higher Institution Centre of Excellence(HICoE)(R.J090301.7846.4J175)Universiti Tunku Abdul Rahman(UTAR)under the research publication scheme(6251/K02)
文摘In this study,a quantitative performance of three commercial polyamide nanofiltration(NF) membranes(i.e.,NF,NF90,and NF270) for phosphorus removal under different feed conditions was investigated.The experiments were conducted at different feed phosphorus concentrations(2.5,5,10,and 15 mg·L^-1) and elevated pHs(pH 1.5,5,10,and 13.5) at a constant feed pressure of 1 MPa using a dead-end filtration cell.Membrane rejection against total phosphorus generally increased with increasing phosphorus concentration regardless of membrane type.In contrast,the permeate flux for all the membranes only decreased slightly with increasing phosphorus concentration.The results also showed that the phosphorus rejections improved while water flux remained almost unchanged with increasing feed solution pH.When the three membranes were exposed to strong pHs(pH 1.5 and 13.5) for a longer duration(up to 6 weeks)it was found that the rejection capability and water flux of the membranes remained very similar throughout the duration,except for NF membrane with marginal decrement in phosphorus rejection.Adsorption study also revealed that more phosphorus was adsorbed onto the membrane structure at alkaline conditions(pH 10 and 13.5) compared to the same membranes tested at lower pHs(pH 1.5 and 5).In eonelusion,NF270 membrane outperformed Nf and NF90 membranes owing to its desirable performance of water flux and phosphorus rejection particularly under strong alkali solution.The NF270 membrane achieved 14.0 L·m^-2·h^-1 and 96.5% rejection against 10 mg·L^-1 phosphorus solution with a pH value of 13.5 at the applied pressure of 1 MPa.
基金financially supported by the Provincial Key Research and Development Program of Zhejiang Province(2021C01173)the National Natural Science Foundation of China(21975221 and 21776252)。
文摘In the face of human society's great requirements for health industry,and the much stricter safety and quality standards in the biomedical industry,the demand for advanced membrane separation technologies continues to rapidly grow in the world.Nanofiltration(NF)and reverse osmosis(RO)as the highefficient,low energy consumption,and environmental friendly membrane separation techniques,show great promise in the application of biomedical separation field.The chemical compositions,microstructures and surface properties of NF/RO membranes determine the separation accuracy,efficiency and operation cost in their applications.Accordingly,recent studies have focused on tuning the structures and tailoring the performance of NF/RO membranes via the design and synthesis of various advanced membrane materials,and exploring universal and convenient membrane preparation strategies,with the objective of promoting the better and faster development of NF/RO membrane separation technology in the biomedical separation field.This paper reviews the recent studies on the NF/RO membranes constructed with various materials,including the polymeric materials,different dimensional inorganic/organic nanomaterials,porous polymeric materials and metal coordination polymers,etc.Moreover,the influence of membrane chemical compositions,interior microstructures,and surface characteristics on the separation performance of NF/RO membranes,are comprehensively discussed.Subsequently,the applications of NF/RO membranes in biomedical separation field are systematically reported.Finally,the perspective for future challenges of NF/RO membrane separation techniques in this field is discussed.
基金the Special Funds for Major State Basic Research Program of China(2003CB615706)
文摘N, O-carboxymethyl chitosan (NOCC) composite nanofiltration (NF) membranes were prepared by coating and cross-linking. The fermentation effluent from a wine factory was treated with the resulting NOCC/polysulfone (PSF) composite NF membranes. The permeate flux and the removal efficiencies of the resulting NF membranes for the color, chemical oxygen demand (CODcr), total organic carbon (TOC), and conductivity of the fermentation effluent were investigated in relation to the driving pressure, the feed flow, and the operation time. The permeate flux and the removal efficiencies were found to increase with the increase of the driving pressure or the feed flow. At 0.40 MPa and ambient temperature the removal efficiencies were 95.5%, 70.7%, 72.6%, and 31.6% for color, CODcr, TOC, and conductivity, respectively. The membrane was found to be stable over a 10-h ooeration for the fermentation effluent treatment.
基金Funded by the National Natural Science Foundation of China (No.50673077)National Basic Research Program of China (No.2006CB708602)
文摘Positively charged composite nanofiltration (NF) membranes were prepared through interfacial polymerization of poly[2-(N,N-dimethyl amino)ethyl methacrylate](PDMAEMA) on porous polysulfone (PSF) substrate membranes. The effects of pH on swelling ratio (SR) of the pure crosslinked PDMAEMA membrane and on separation performances of the composite NF membrane were investigated. The results show that the quaternized amino groups produced through interfacial polymerization technique are soluble in both phases, which accelerate the crosslinking reaction as self-catalysts. The swelling/contracting behavior of the pure crosslinked PDMAEMA exhibited a well reversible pH sensitive property. Importantly, the rejection and flux of the composite NF membrane show pH-sensitive behavior in NF process. Furthermore, with the help of a relatively novel method to measure membrane conduction, the true zeta potentials calculated on the basis of the streaming potential measurements proved the pH-sensitive behavior of the NF membrane.
文摘Inorganic nanofiltration(NF)membranes as a new kind of membranes appeared a few years ago.Thisreview presents the progress in inorganic NF membranes during recent years.Synthesis,characterization,performance,and application of inorganic NF membranes are emphatically introduced,and the trends of devel-opment are also discussed.
基金Supported by the National Natural Science Foundation of China(20906047,21276123)the National High Technology Research and Development Program of China(2012AA03A606)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(ZK201002)the Natural Science Research Plan of Jiangsu Universities(11KJB530006)the"Summit of the Six Top Talents"Program of Jiangsu Provincea Project Funded by the Priority Academic Program development of Jiangsu Higher Education Institutions(PAPD)
文摘This paper reports the effect of sol size on nanofiltration performances of sol–gel derived microporous zirconia membranes. Microstructure, pure water flux, molecular weight cut-off(MWCO) and salt retention of zirconia membranes derived from zirconia sols with different sizes were characterized. Thermal evolution, phase composition, microstructure and chemical stability of unsupported zirconia membranes(powder) were determined by thermogravimetric and differential thermal analysis, X-ray diffraction, nitrogen adsorption–desorption and static solubility measurements. Results show that nanofiltration performance of zirconia membranes is highly dependent on sol size. The sol with an average size of 3.8 nm, which is smaller than the pore size of the γ-Al2O3support(pore size: 5–6 nm), forms a discontinuous zirconia separation layer because of excessive penetration of sol into the support. This zirconia membrane displays a MWCO value towards polyethylene glycol higher than 4000 Da. A smooth and defect-free zirconia membrane with a MWCO value of 1195 Da(pore size: 1.75 nm) and relative high retention rates towards Mg Cl2(76%) and Ca Cl2(64%) was successfully fabricated by dip-coating the sol with an appropriate size of 8.6 nm. Zirconia sol with an average size of 12 nm exhibits colloidal nature and forms a zirconia membrane with a MWCO value of 2332 Da(pore size: 2.47 nm). This promising microporous zirconia membrane presents sufficiently high chemical stability in a wide p H range of 1–12.
基金Funded by the Major State Basic Research Development Program of China (973 Program)( No.2003CB615706)
文摘A selfmade positively charged nanofiltration (NF) membrane was used to treat textile dye effluent to generate water for reuse, and the factors affecting nanofiltration process such as operating pressure, feed flow and membrane cleaning were investigated. With an applied pressure of 1.0 MPa and a feed flow of 40 L/h, this NF membrane has a removal of 93.3% for CODor and a reduction of approximately 51.0% in TDS, salinity and conductivity achieving the chroma removal of 100%. The permeate obtained through this membrane is suitable for recycling. Moreover, the membrane could be reused after being cleaned with 1% NaOH solution.
基金financially supported by the National Natural Science Foundation of China(21476005,21878003)the National Natural Science Fund for Innovative Research Groups(51621003)。
文摘The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane.In this work,a hydrophilic PDA-[PDDA/TiO2]+Cl-membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride)(PDDA)polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine(DA).Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+PFO-via the counterion exchange between Cl-and PFO-(perfluorooctanoate).The transformation between hydrophilicity and hydrophobicity is reversible.For both hydrophilic and hydrophobic membranes,the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue(MB),Congo red(CR)and Evans blue(EB),and as well metal salt aqueous solution.The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored.The results revealed that both membranes showed high nanofiltration performances for retention of dyes in(non)aqueous solution.For the hydrophilic membrane,the rejection of salts in a sequence is MgSO4>Na2SO4>MgCl2>NaCl.Moreover,both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.
基金supported by the National Natural Science Foundation of China(21490581)the China Petroleum and Chemical Corporation Limited Project(317008-6)+1 种基金the Innovation Driven Development Special Fund Project of Guangxi Province(AA17204092)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Effective extraction of lithium from high Mg2+/Li+ratio brine lakes is of great challenge.In this work,organic–inorganic hybrid silica nanofiltration(NF)membranes were prepared by dip-coating a 1,2-bis(triethoxysilyl)ethane(BTESE)-derived separation layer on tubular TiO2 support,for efficient separation of LiC l and MgCl2 salt solutions.We found that the membrane calcinated at 400°C(M1–400)could exhibit a narrow pore size distribution(0.63–1.66 nm)owing to the dehydroxylation and the thermal degradation of the organic bridge groups.All as-prepared membranes exhibited higher rejections to LiCl than to MgCl2,which was attributed to the negative charge of the membrane surfaces.The rejection for LiCl and MgCl2 followed the order:LiCl N MgCl2,revealing that Donnan exclusion effect dominated the salt rejection mechanism.In addition,the triplecoated membrane calcined at 400°C(M3–400)exhibited a permeability of about 9.5 L·m-2·h-1·bar-1 for LiCl or MgCl2 solutions,with rejections of 74.7%and 20.3%to LiCl and MgCl2,respectively,under the transmembrane pressure at 6 bar.Compared with the previously reported performance of NF membranes for Mg2+/Li+separation,the overall performance of M3–400 is highly competitive.Therefore,this work may provide new insight into designing robust silica-based ceramic NF membranes with negative charge for efficient lithium extraction from salt lakes.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50978068)International Cooperation Program (Grant No.2010DFA92460)+1 种基金the National High Technology Research and Development Program (863 Program,Grant No.2008AA06Z304)the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology
文摘A novel NF membrane prepared with poly(amidoamine) (PAMAM) dendrimer and trimesoyl chloride (TMC) by interfacial polymerization on polysulfone (PSF) ultrafiltration membrane was investigated. Field emission scanning electron microcopy ( FESEM), atomic force micrograph ( AFM ) and contact angle (CA) of pure water on PA and PSF substrate were employed to characterize the chemical and physical properties of membranes. The PAMAM concentration, retention of salt solutions and organics were studied on the performance of the NF membrane. From the analyses of SEM and AFM, the polyamide active skin layers of the composite membranes are dense, rough, and finely dispersed nodular structures, packed tightly by the spherical globules. The contact angle of PA nanofitration membrane decreased after polymerization. The higher PAMAM concentra- tion can result in lower flux and higher rejection. The salt rejection of PA membranes decreases in the order K2 SO4 〉 Na2 SO4 〉 MgSQ 〉 MgC12 〉 CaC12 〉 NaC1, which indicates that the resulting membranes is nagatively charged. The pH increases from 3 to 10 in the feed resulting in the decrease of the flux and the increase of the rejection for NazSO4 solution. The molecular weight cut off (MWCO) of the composite NF membrane is nearly 860 kg/mol. The resulted PA membrane can be used to seoarate small organics and salt solutions.
基金National High Technology Research and Development Program of China (863 program) (No. 2008AA06Z330)National Technician Service Enterprise Action Program,China (No. 2009GJD00048)
文摘Improvement strength is beneficial to the popularization of hollow fiber nanofiltration(NF) membrane.The tri-channel hollow fiber NF membrane was prepared by interfacial polymerization(IP).The high strength tri-channel hollow fiber ultrafiltration(UF) membrane were used as the support membrane,m-phenylenedianline(m-PDA),and polyethylenimine(PEI) were used as aqueous phase monomer,and trimesoyl chloride(TMC) was used as organic phase monomer.Fourier transform infrared spectroscopy(FTIR),scanning electron microscope(SEM),and gas sorption analyzer(GSA) were applied in structural analysis of NF membrane.Polymer FTIR illustrates the IP occurrence between aqueous phase monomer and organic phase monomer.The SEM images of NF membrane show the formation of a thin dense layer on surface of support membrane after IP.The flux(J) of optimal NF membrane is 11.2 L·m-2· h-1 at the 0.35 MPa operating pressure.Its retention(R) for NaCl,Na2SO4,MgCl2,Xylenol orange,and Neutral red is 17.4%,30.2%,16.1%,94.3%,and 51.0%,respectively.The NF membrane is on negative charge and its pore radius distributes between 0.3-2.0 nm.
基金Supported by the National Basic Research Program of China(2015CB655303)the Natural Science Foundation of Zhejiang Province(Q14B040003)
文摘Microstructure in selective layer has played a decisive role in permselectivity of nanofiltration(NF) membranes,and nanomaterials were well-known additives that had been applied to mediate the microstructure and permeability of polyamide NF membranes. However, nanoadditives generally displayed a poor dispersion in membranes or in fabrication process. To solve this problem, we showed an interesting concept that novel NF membranes with hybrid selective layer consisting of flexible polyisobutylene(PIB) and rigid polyamide could be fabricated from well-defined interfacial polymerization. The hydrophobic polymer mediated phase separation and microdomains formation in polyamide layer were found. The immiscibility between the rigid polyamide and flexible PIB as well as the resultant interface effect was interpreted as the reason for the polymer enhanced permselectivity, which was similar with the well-known thin film nanocomposite(TFN) membranes that nanoparticles incorporated contributed significantly to membrane permeability and rejection performance.Our results have demonstrated that novel NF membranes with enhanced performance can be prepared from immiscible polymers, which is a new area that has not been extensively studied before.
基金Project(20806094)supported by the National Natural Science Foundation of ChinaProject(2008SK1001)supported by Energy-saving and Emission-reducing Major Special Projects of Department of Science&Technology of Hunan Province,ChinaProjects(K0901082-11,K0902123-11)supported by Plan on Science and technology Bureau of Changsha,China
文摘Using Donnan Steric Partitioning Model(DSPM),the data for the rejection of four salts having common co-ion(LiCl, NaCl,KCl,Na2SO4)were obtained and they show the characters of the polyethersulfone(PES)nanofiltration(NF)membrane in terms of three parameters:an effective pore radius(rp),the ratio of effective thickness over porosity(λ/Ak)and an effective charge density(X).Good agreement between experimental data and prediction data using the three parameters mentioned above was obtained.A theoretical model was developed to predict the transport performance of electrolyte through the hollow fiber composite NF membrane.The model prediction is in good agreement with experimental results based on the method by modern numerical solution.
基金supported by the National Nature Foundation of China (No.50433010)National 973 Foundation of China (No.2003CB615705)the China Postdoctoral Science Foundation (No.20060400338).
文摘A series of nanofiltration (NF) membranes were prepared with poly(amido-amine) (PAMAM) and trimesoyl chloride (TMC) via in situ interfacial polymerization.The effects of the generation number and concentration of PAMAM on the properties of NF membranes were discussed.Fourier transform infrared spectroscopy (FTIR-ATR),atomic force micrgscopy (AFM),scanning electron microscopy (SEM) and contact angle measurements were employed to characterize the resulting membranes.The nanofiltration performances were evalua...