In recent years, high performance scientific computing under workstation cluster connected by local area network is becoming a hot point. Owing to both the longer latency and the higher overhead for protocol processin...In recent years, high performance scientific computing under workstation cluster connected by local area network is becoming a hot point. Owing to both the longer latency and the higher overhead for protocol processing compared with the powerful single workstation capacity, it is becoming severe important to keep balance not only for numerical load but also for communication load, and to overlap communications with computations while parallel computing. Hence,our efficiency evaluation rules must discover these capacities of a given parallel algorithm in order to optimize the existed algorithm to attain its highest parallel efficiency. The traditional efficiency evaluation rules can not succeed in this work any more. Fortunately, thanks to Culler's detail discuss in LogP model about interconnection networks for MPP systems, we present a system of efficiency evaluation rules for parallel computations under workstation cluster with PVM3.0 parallel software framework in this paper. These rules can satisfy above acquirements successfully. At last, two typical synchronous,and asynchronous applications are designed to verify the validity of these rules under 4 SGIs workstations cluster connected by Ethernet.展开更多
The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic l...The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.展开更多
针对传统k-均值聚类方法不能有效处理海量数据聚类的问题,该文提出一种基于并行计算的加速k-均值聚类(K-means clustering based on parallel computing,Pk-means)方法。该方法首先将海量的聚类样本随机划分为多个独立同分布的聚类工作...针对传统k-均值聚类方法不能有效处理海量数据聚类的问题,该文提出一种基于并行计算的加速k-均值聚类(K-means clustering based on parallel computing,Pk-means)方法。该方法首先将海量的聚类样本随机划分为多个独立同分布的聚类工作集,并在每个工作集上并行进行传统k-均值聚类,并得到相应的聚类中心和半径,通过衡量不同子集聚类结果的关系,对每个工作集中聚类得到的子类进行合并,并对特殊数据进行二次归并以校正聚类结果,从而有效处理海量数据的聚类问题。实验结果表明,Pk_means方法在大规模数据集上在保持聚类效果的同时大幅度提高了聚类效率。展开更多
随着海量大数据的出现,聚类算法需要新型计算模式来提高计算速度与运行效率。本文提出一种基于动态双子种群的差分进化K中心点聚类算法DGP-DE-K-mediods(Dynamic Gemini Population based DE-K-mediods)。DGP-DE-K-mediods利用动态双子...随着海量大数据的出现,聚类算法需要新型计算模式来提高计算速度与运行效率。本文提出一种基于动态双子种群的差分进化K中心点聚类算法DGP-DE-K-mediods(Dynamic Gemini Population based DE-K-mediods)。DGP-DE-K-mediods利用动态双子种群方法,解决聚类算法在维持种群密度的时候避免陷入局部最优的问题;采用差分进化(Differential Evolution,DE)算法来提高全局最优能力的强健性;基于Hadoop云平台来并行处理DGP-DE-K-mediods,加快算法的运行速度和效率;描述基于MapReduce的并行聚类算法的编程过程;DGP-DE-K-mediods利用UIC的大数据分类的案例数据和网络入侵检测这种大数据应用来仿真算法的效果。实验结果表明,与已有的聚类算法相比,DGP-DE-K-mediods在检测精度、运行时间上有明显的优势。展开更多
文摘In recent years, high performance scientific computing under workstation cluster connected by local area network is becoming a hot point. Owing to both the longer latency and the higher overhead for protocol processing compared with the powerful single workstation capacity, it is becoming severe important to keep balance not only for numerical load but also for communication load, and to overlap communications with computations while parallel computing. Hence,our efficiency evaluation rules must discover these capacities of a given parallel algorithm in order to optimize the existed algorithm to attain its highest parallel efficiency. The traditional efficiency evaluation rules can not succeed in this work any more. Fortunately, thanks to Culler's detail discuss in LogP model about interconnection networks for MPP systems, we present a system of efficiency evaluation rules for parallel computations under workstation cluster with PVM3.0 parallel software framework in this paper. These rules can satisfy above acquirements successfully. At last, two typical synchronous,and asynchronous applications are designed to verify the validity of these rules under 4 SGIs workstations cluster connected by Ethernet.
基金Natural Science Foundation of China (No.60 173 0 3 1)
文摘The real problem in cluster of workstations is the changes in workstation power or number of workstations or dynmaic changes in the run time behavior of the application hamper the efficient use of resources. Dynamic load balancing is a technique for the parallel implementation of problems, which generate unpredictable workloads by migration work units from heavily loaded processor to lightly loaded processors at run time. This paper proposed an efficient load balancing method in which parallel tree computations depth first search (DFS) generates unpredictable, highly imbalance workloads and moves through different phases detectable at run time, where dynamic load balancing strategy is applicable in each phase running under the MPI(message passing interface) and Unix operating system on cluster of workstations parallel platform computing.
文摘针对传统k-均值聚类方法不能有效处理海量数据聚类的问题,该文提出一种基于并行计算的加速k-均值聚类(K-means clustering based on parallel computing,Pk-means)方法。该方法首先将海量的聚类样本随机划分为多个独立同分布的聚类工作集,并在每个工作集上并行进行传统k-均值聚类,并得到相应的聚类中心和半径,通过衡量不同子集聚类结果的关系,对每个工作集中聚类得到的子类进行合并,并对特殊数据进行二次归并以校正聚类结果,从而有效处理海量数据的聚类问题。实验结果表明,Pk_means方法在大规模数据集上在保持聚类效果的同时大幅度提高了聚类效率。
文摘随着海量大数据的出现,聚类算法需要新型计算模式来提高计算速度与运行效率。本文提出一种基于动态双子种群的差分进化K中心点聚类算法DGP-DE-K-mediods(Dynamic Gemini Population based DE-K-mediods)。DGP-DE-K-mediods利用动态双子种群方法,解决聚类算法在维持种群密度的时候避免陷入局部最优的问题;采用差分进化(Differential Evolution,DE)算法来提高全局最优能力的强健性;基于Hadoop云平台来并行处理DGP-DE-K-mediods,加快算法的运行速度和效率;描述基于MapReduce的并行聚类算法的编程过程;DGP-DE-K-mediods利用UIC的大数据分类的案例数据和网络入侵检测这种大数据应用来仿真算法的效果。实验结果表明,与已有的聚类算法相比,DGP-DE-K-mediods在检测精度、运行时间上有明显的优势。