By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst we...By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst were studied .The upper solution of benzylated wood was also studied by GC MS analysis. It proved that the introduction of bulky benzyl group in wood significantly changed the crystalline structure of wood ,enlarging the free volume which facilitated the penetration of solvent into the matrix of treated wood, thus tremendously enhancing thesolubility in solvent,compared to untreated wood and alkali treated wood. The percentage of residue decreased and the combined solvent increased with the increase of weight gain revealed that the liquefaction process became easy. Furthermore, the factors that influenced the liquefaction of benzylated wood were investigated. It showed that the liquefaction performance was improved with the increase of liquefaction time and the amount of catalyst when toluene was used as a solvent, especially in the presence of THF as solvent, there existed the optimum liquefaction time and the amount of catalyst .展开更多
Based on wood structure of ancient buildings in China,the paper considers that Chinese ancient people have selected wood as the architectural material due to its characteristics and some necessity.After the analysis o...Based on wood structure of ancient buildings in China,the paper considers that Chinese ancient people have selected wood as the architectural material due to its characteristics and some necessity.After the analysis of architectural features of traditional settlements,it has found that Chinese ancient people tend to draw on local materials for construction.Then,it further analyzes the adaptability of Chinese wood structure,and the flexibility and complexity of its plane layout.By combining with Chinese's life value,the eternal significance contained in wood structure has been explained based on material and spiritual level.From the perspective of natural selection,technological advancement,spatial advantage,spiritual value and aesthetic need,the paper tries to find causes for wood structure as architectural materials,aiming to objectively treat the effort of Chinese ancient people made in the progress history of human civilization.展开更多
In order to reduce the formaldehyde emission of formaldehyde-based wood adhesive from the source,it is aimed to develop a novel co-condensed resin of glyoxal-monomethylolurea-melamine(G-MMU-M).A series of G-MMU-M resi...In order to reduce the formaldehyde emission of formaldehyde-based wood adhesive from the source,it is aimed to develop a novel co-condensed resin of glyoxal-monomethylolurea-melamine(G-MMU-M).A series of G-MMU-M resins with various formulations of raw materials were successfully prepared.The basic properties and bonding performance of the G-MMU-M resins were determined.Furthermore,the structures of resins were characterized by FTIR,^(13)C NMR,XPS,and ESI-MS.The results show that the prepared G-MMU-M resin remains stable for 30 d,meanwhile,the dry and wet bonding strength of the plywoods bonded with the resins,solid content and viscosity are influenced greatly by the addition amount of melamine and MMU/G molar ratio.The G-MMU-M resins with MMU/G molar ratio of 0.9:1.0 and 8% melamine exhibit the highest dry and bonding strength of 1.98 MPa and 1.27 MPa,increased by 34% and 63%,respectively,in comparison with glyoxal-monomethylolurea(G-MMU)resin.In the G-MMU-M resins,there were four main oligomers including M—CH(—^(+)CH-MMU)-O-MMU,M-CH(—CH_(2)OH)-MMU-O-MMU,M—CH(—OH)—^(+)CH-MMU-O-MMU,and M—CH(—^(+)CH-MMU)-MMU-p-G.展开更多
This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted te...This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.展开更多
A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding th...A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.展开更多
The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried greenwood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) wer...The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried greenwood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured in order to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of both the air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchanged dried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand, a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number of unaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller number of tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effective tracheid length for permeability.展开更多
Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory whic...Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory which are suitable for the binary processing of the wood anatomical structure image. After the wood image has been processed binary, with the help of computer vision technology, the boundary of wood anatomical structure molecular binary image was sought This kind of theory and method lay a solid foundaion on the collection of feature and the pottern recognition and other high level processing of wood anatomical structure molecular image.展开更多
Our study focused on the effects of wood poaching on the vegetation structure and composition in Mukuvisi Woodland, Zimbabwe. Mukuvisi Woodland, located within the precincts of Harare urban area, Zimbabwe, suffers fro...Our study focused on the effects of wood poaching on the vegetation structure and composition in Mukuvisi Woodland, Zimbabwe. Mukuvisi Woodland, located within the precincts of Harare urban area, Zimbabwe, suffers from high illegal wood utilization pressure stemming from the need to fulfill alternative energy demands created by persistent electricity shortages and an unstable economic environment, particularly between 2000 and 2008. This results in a continuous flux of vegetation and a disturbed animal habitat driven mainly by anthropogenic activities. Due to the heterogeneity in vegetation utilisation trends, we used the stratified systematic random sampling technique, where the site was divided into two strata, central and boundary. Twelve 30 × 20 m permanent plots were established in which species name, species diversity, height, basal area, plant status, fire evidence, number of stems and saplings were recorded and assessed in April and May 2012. A total of 968 woody plants were assessed representing 47 woody plant species. All woody vegetation variables recorded and assessed showed no significant difference (P > 0.05) between the two strata, i.e., central and boundary, in Mukuvisi Woodland, except sapling density (P = 0.022). Principal Component Analysis indicated evidence of fire impacts on vegetation structure. The study concludes that illegal wood harvesting in Mukuvisi Woodland has not yet reached alarming proportions and can be contained. The study recommends collaborative arrangements with key stakeholders, promotion of the use of alternative energy sources and increased environmental education and awareness campaigns.展开更多
Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main c...Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.展开更多
Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however th...Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however the mechanism of that influence is not clear. In order to examine the reproductive strategies of PWN in response to the stress of the volatile material a-pinene, we investigated different aspects of population changes of B.xylophilus under two concentrations of a-pinene. The results show that a high concentration(214.5 mg ml-1)promoted population growth while a low concentration(56.33 mg ml-1) decreased the population. Population structure was analyzed and it was found that a high concentration of a-pinene decreased the percentage of adults but increased the percentages of larvae and eggs.Furthermore, from the results of an evaluation of sex ratios(female/male), it was determined that a high concentration could elevate sex ratios but a low concentration decreased ratios sharply. These results suggest that the PWN could regulate its population by changing sex ratios under stress of a-pinene. This study has provided a theoretical basis for the prevention and control of pine wilt disease caused by the pine wood nematode.展开更多
The artificial afforestation of precious Phoebe bournei has been carried out in China.During the cultivation process,thinning wood will be produced.The properties of thinning wood might vary greatly with matured wood ...The artificial afforestation of precious Phoebe bournei has been carried out in China.During the cultivation process,thinning wood will be produced.The properties of thinning wood might vary greatly with matured wood and require evaluation for better utilization.The objective of the present study aims to determine the wood structure,fiber morphology,and physical and mechanical properties of the Phoebe bournei thinning wood to help us understand the wood properties and improve its utility value.Three 14-year-old Phoebe bournei were cut from Jindong Forestry Farm of Hunan Province,China.The wood structure and fiber morphology were observed and analyzed with a light microscope and scanning electron microscope.The physical and mechanical properties were tested according to the Chinese national standards.The results showed as follows:(1)The Phoebe bournei thinning wood has a beautiful wood figure and fine texture,whereas the heartwood has not yet formed.(2)It is a diffuse-porous hardwood with small and less pores as well as fine wood rays.(3)The wood fiber is medium length and extremely thin wall thickness.(4)It is low in density and has excellent dimensionally stability.(5)The wood mechanical properties belong to the low to medium class and the comprehensive strength of wood belongs to the medium-strength class.It is concluded that Phoebe bournei thinning wood is suitable for wood carving,handicraft,high-end furniture,and decorative furniture parts.展开更多
The production of chemicals from biomass is a very challenging process due to its diverse chemical composition. Lignin, cellulose and hemicellulose are the three main biopolymers of wood biomass, with cell walls &pla...The production of chemicals from biomass is a very challenging process due to its diverse chemical composition. Lignin, cellulose and hemicellulose are the three main biopolymers of wood biomass, with cell walls &plant origin. Lignin has been chosen for the present studies due to its range of different linkages and structures. The present work involved a computational study of the most dominant lignin dimers and their vibrational structures, based on the Density Functional Theory method. Full geometry optimization of the compartments used the StoBe code with cluster model and non-local functional (RPBE) approach. The calculations of the vibrational frequencies were performed with harmonic approximations as well as an anharmonicity fit in the Morse potential function, as implemented in the StoBe code. In the case oflignin, the calculations included three different precursors based on: coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. To represent the cellulose and hemicellulose derivatives, selected aldopentoses and aldohexoses (arabinose, xylose, glucose, galactose, and mannose) were considered. Presented here are the theoretical investigations for a variety of biomass derived compounds, to give the possibility of obtaining a theoretical VBD (Vibrations Basis Database) for experimental spectra interpretation. Such a database could be further used in the preliminary composition assessment of biomass derived substrates, which will be discussed here in more detail.展开更多
Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more devel...Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.展开更多
文摘By means of X ray and gas chromatography analysis, the crystalline structure of untreated wood , alkali treated wood and benzylated wood and their liquefaction in toluene and tetrahydrofufan with HCl as a catalyst were studied .The upper solution of benzylated wood was also studied by GC MS analysis. It proved that the introduction of bulky benzyl group in wood significantly changed the crystalline structure of wood ,enlarging the free volume which facilitated the penetration of solvent into the matrix of treated wood, thus tremendously enhancing thesolubility in solvent,compared to untreated wood and alkali treated wood. The percentage of residue decreased and the combined solvent increased with the increase of weight gain revealed that the liquefaction process became easy. Furthermore, the factors that influenced the liquefaction of benzylated wood were investigated. It showed that the liquefaction performance was improved with the increase of liquefaction time and the amount of catalyst when toluene was used as a solvent, especially in the presence of THF as solvent, there existed the optimum liquefaction time and the amount of catalyst .
基金Supported by Independent Scientific Research Fund of Dalian Nationalities University(DC10030205)~~
文摘Based on wood structure of ancient buildings in China,the paper considers that Chinese ancient people have selected wood as the architectural material due to its characteristics and some necessity.After the analysis of architectural features of traditional settlements,it has found that Chinese ancient people tend to draw on local materials for construction.Then,it further analyzes the adaptability of Chinese wood structure,and the flexibility and complexity of its plane layout.By combining with Chinese's life value,the eternal significance contained in wood structure has been explained based on material and spiritual level.From the perspective of natural selection,technological advancement,spatial advantage,spiritual value and aesthetic need,the paper tries to find causes for wood structure as architectural materials,aiming to objectively treat the effort of Chinese ancient people made in the progress history of human civilization.
基金National Natural Science Foundation of China(31860188)Special Project of“Leading Talents of Industrial Technology”of Yunnan Ten Thousand Talents Plan(80201408)Yunnan Agricultural joint project(202101BD070001-105)are acknowledged.
文摘In order to reduce the formaldehyde emission of formaldehyde-based wood adhesive from the source,it is aimed to develop a novel co-condensed resin of glyoxal-monomethylolurea-melamine(G-MMU-M).A series of G-MMU-M resins with various formulations of raw materials were successfully prepared.The basic properties and bonding performance of the G-MMU-M resins were determined.Furthermore,the structures of resins were characterized by FTIR,^(13)C NMR,XPS,and ESI-MS.The results show that the prepared G-MMU-M resin remains stable for 30 d,meanwhile,the dry and wet bonding strength of the plywoods bonded with the resins,solid content and viscosity are influenced greatly by the addition amount of melamine and MMU/G molar ratio.The G-MMU-M resins with MMU/G molar ratio of 0.9:1.0 and 8% melamine exhibit the highest dry and bonding strength of 1.98 MPa and 1.27 MPa,increased by 34% and 63%,respectively,in comparison with glyoxal-monomethylolurea(G-MMU)resin.In the G-MMU-M resins,there were four main oligomers including M—CH(—^(+)CH-MMU)-O-MMU,M-CH(—CH_(2)OH)-MMU-O-MMU,M—CH(—OH)—^(+)CH-MMU-O-MMU,and M—CH(—^(+)CH-MMU)-MMU-p-G.
文摘This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.
基金funded by the National Science and Technology Support Program(2011BAK12B00)the International Cooperation Project of the Department of Science and Technology of Sichuan Province(Grant No.2009HH0005).
文摘A herringbone water-sediment separation structure(hereinafter referred to as "herringbone structure") has been shown to be effective in separating coarse inorganic debris; however, less is known regarding the large wood(LW) filtration effect in this structure. This paper presents preliminary research on the wood filtration effect of the herringbone structure based on physical model tests.The results show that the herringbone structure exhibited effective performance in large wood size segregation, with a 100% component filtration rate for LW that diameter(D) larger than ribbed beam opening width(a). The total filtration rate also exceeded 80% when the Fraud number(Fr) is larger than 2.64 and increased with the increase of Fr. After exceeding Frmax, total filtration rate would be decreased due to overflow. Beside flow condition,structure parameters influence significantly on LW filtration rate. We attempt to explain the filtration process via particle contact trajectory and particle movement trajectory. The inclined angle of ribbed beam(γ) contributed the most variation to the filtration rate via influencing the coincidence with particle contact trajectory and particle movement trajectory. The high sensitivity coefficient of ribbed beam(θ) under relatively low Fr conditions implies remarkable influences on LW filtration effects by causing clogging problem. The ribbed beam opening width(a) together with LW diameter(D) influenced the size segregation performance.
文摘The permeability and the structure of heartwood and sapwood of the solvent-exchange dried and the air-dried greenwood of Chinese-fir (Cunninghamia lanceolata (Lamb.) Hook.) and masson pine (Pinus massoniana Lamb.) were measured in order to study the relations between the permeability and the structure. The results showed that the permeability of sapwood of both the air-dried and the solvent-exchange dried wood was higher than that of heartwood, and the permeability of the solvent-exchanged dried heartwood and sapwood was higher than that of the air-dried. A higher permeability of wood was attributed to, on the one hand, a bigger number of flow path per unit area of the wood perpendicular to the flow direction resulted from a bigger number of unaspirated pits per unit area and a bigger number of effective pit openings per membrane, and on the other hand, a smaller number of tracheid in series connection per unit length parallel to flow direction resulted from a longer tracheid length and an effective tracheid length for permeability.
文摘Basing on a lot of examinations, according to the fundamental inage processing theories and methods, getting touch with the property of wood anatomical structure image,we put forward the optimum method and theory which are suitable for the binary processing of the wood anatomical structure image. After the wood image has been processed binary, with the help of computer vision technology, the boundary of wood anatomical structure molecular binary image was sought This kind of theory and method lay a solid foundaion on the collection of feature and the pottern recognition and other high level processing of wood anatomical structure molecular image.
文摘Our study focused on the effects of wood poaching on the vegetation structure and composition in Mukuvisi Woodland, Zimbabwe. Mukuvisi Woodland, located within the precincts of Harare urban area, Zimbabwe, suffers from high illegal wood utilization pressure stemming from the need to fulfill alternative energy demands created by persistent electricity shortages and an unstable economic environment, particularly between 2000 and 2008. This results in a continuous flux of vegetation and a disturbed animal habitat driven mainly by anthropogenic activities. Due to the heterogeneity in vegetation utilisation trends, we used the stratified systematic random sampling technique, where the site was divided into two strata, central and boundary. Twelve 30 × 20 m permanent plots were established in which species name, species diversity, height, basal area, plant status, fire evidence, number of stems and saplings were recorded and assessed in April and May 2012. A total of 968 woody plants were assessed representing 47 woody plant species. All woody vegetation variables recorded and assessed showed no significant difference (P > 0.05) between the two strata, i.e., central and boundary, in Mukuvisi Woodland, except sapling density (P = 0.022). Principal Component Analysis indicated evidence of fire impacts on vegetation structure. The study concludes that illegal wood harvesting in Mukuvisi Woodland has not yet reached alarming proportions and can be contained. The study recommends collaborative arrangements with key stakeholders, promotion of the use of alternative energy sources and increased environmental education and awareness campaigns.
基金Science and technology research projects of colleges and universities in Inner Mongolia(NJZY22511)Funds for basic scientific research in universities of Inner Mongolia:Key project of Philosophy and Social Science Foundation of Inner Mongolia Agricultural University(BR220603)。
文摘Wooden buildings play a very important role in China’s construction and landscape architecture industry.In order to explore the weathering characteristics of the surface layer of landscape wooden buildings,the main causes of weathering were analyzed on the basis of summarizing the common types of weathering characterization.The results showed that the weathering characterization was mainly reflected in the surface defects of wood structures,such as cracking,discoloration,peeling,wind erosion wear,and so on.The coating technology on the surface of constructions was the main artificial factor affecting the surface defects of constructions.In the case of similar surface decoration conditions,sunlight and moisture were the main natural factors affecting the weathering of wooden buildings,which will promote the process of weathering.
基金financially supported by Fundamental Research Funds of Research Institute of Forest New Technology,CAF(CAFYBB2018SY037)National Key Research and Development Program(2016YFC1200604)。
文摘Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however the mechanism of that influence is not clear. In order to examine the reproductive strategies of PWN in response to the stress of the volatile material a-pinene, we investigated different aspects of population changes of B.xylophilus under two concentrations of a-pinene. The results show that a high concentration(214.5 mg ml-1)promoted population growth while a low concentration(56.33 mg ml-1) decreased the population. Population structure was analyzed and it was found that a high concentration of a-pinene decreased the percentage of adults but increased the percentages of larvae and eggs.Furthermore, from the results of an evaluation of sex ratios(female/male), it was determined that a high concentration could elevate sex ratios but a low concentration decreased ratios sharply. These results suggest that the PWN could regulate its population by changing sex ratios under stress of a-pinene. This study has provided a theoretical basis for the prevention and control of pine wilt disease caused by the pine wood nematode.
基金the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20210867)the Scientific Innovation Fund for Postgraduates of Central South University of Forestry and Technology(No.CX202102030).
文摘The artificial afforestation of precious Phoebe bournei has been carried out in China.During the cultivation process,thinning wood will be produced.The properties of thinning wood might vary greatly with matured wood and require evaluation for better utilization.The objective of the present study aims to determine the wood structure,fiber morphology,and physical and mechanical properties of the Phoebe bournei thinning wood to help us understand the wood properties and improve its utility value.Three 14-year-old Phoebe bournei were cut from Jindong Forestry Farm of Hunan Province,China.The wood structure and fiber morphology were observed and analyzed with a light microscope and scanning electron microscope.The physical and mechanical properties were tested according to the Chinese national standards.The results showed as follows:(1)The Phoebe bournei thinning wood has a beautiful wood figure and fine texture,whereas the heartwood has not yet formed.(2)It is a diffuse-porous hardwood with small and less pores as well as fine wood rays.(3)The wood fiber is medium length and extremely thin wall thickness.(4)It is low in density and has excellent dimensionally stability.(5)The wood mechanical properties belong to the low to medium class and the comprehensive strength of wood belongs to the medium-strength class.It is concluded that Phoebe bournei thinning wood is suitable for wood carving,handicraft,high-end furniture,and decorative furniture parts.
文摘The production of chemicals from biomass is a very challenging process due to its diverse chemical composition. Lignin, cellulose and hemicellulose are the three main biopolymers of wood biomass, with cell walls &plant origin. Lignin has been chosen for the present studies due to its range of different linkages and structures. The present work involved a computational study of the most dominant lignin dimers and their vibrational structures, based on the Density Functional Theory method. Full geometry optimization of the compartments used the StoBe code with cluster model and non-local functional (RPBE) approach. The calculations of the vibrational frequencies were performed with harmonic approximations as well as an anharmonicity fit in the Morse potential function, as implemented in the StoBe code. In the case oflignin, the calculations included three different precursors based on: coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. To represent the cellulose and hemicellulose derivatives, selected aldopentoses and aldohexoses (arabinose, xylose, glucose, galactose, and mannose) were considered. Presented here are the theoretical investigations for a variety of biomass derived compounds, to give the possibility of obtaining a theoretical VBD (Vibrations Basis Database) for experimental spectra interpretation. Such a database could be further used in the preliminary composition assessment of biomass derived substrates, which will be discussed here in more detail.
基金This work was supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)333 Talent High-Level Project of Jiangsu Province,and Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writer(s)and do not necessarily reflect the views of the foundations.
文摘Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.