Sonic hedgehog(Shh)是一类在胚胎发育过程中起关键作用的信号调节因子。研究认为Shh信号在前列腺导管形成分化以及基质-上皮的相互作用等机制中发挥着重要作用,从而调节前列腺发育、生长和细胞增殖;Shh信号作用途径的紊乱可导致肿瘤细...Sonic hedgehog(Shh)是一类在胚胎发育过程中起关键作用的信号调节因子。研究认为Shh信号在前列腺导管形成分化以及基质-上皮的相互作用等机制中发挥着重要作用,从而调节前列腺发育、生长和细胞增殖;Shh信号作用途径的紊乱可导致肿瘤细胞的生成和增殖。探讨Shh信号机制在前列腺正常生长和疾病状态中的作用将为研究前列腺疾病的发病机制提供重要的思路。展开更多
The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation migration and ...The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.展开更多
The primary cilium, a hair-like sensory organelle found on most mammalian cells, has gained recent attention within the field of neuroscience. Although neural primary cilia have been known to play a role in embryonic ...The primary cilium, a hair-like sensory organelle found on most mammalian cells, has gained recent attention within the field of neuroscience. Although neural primary cilia have been known to play a role in embryonic central nervous system patterning, we are just beginning to appreciate their importance in the mature organism. After several decades of investigation and controversy, the neural primary cilium is emerging as an important regulator of neuroplasticity in the healthy adult central nervous system. Further, primary cilia have recently been implicated in disease states such as cancer and epilepsy. Intriguingly, while primary cilia are expressed throughout the central nervous system, their structure, receptors, and signaling pathways vary by anatomical region and neural cell type. These differences likely bear relevance to both their homeostatic and neuropathological functions, although much remains to be uncovered. In this review, we provide a brief historical overview of neural primary cilia and highlight several key advances in the field over the past few decades. We then set forth a proposed research agenda to fill in the gaps in our knowledge regarding how the primary cilium functions and malfunctions in nervous tissue, with the ultimate goal of targeting this sensory structure for neural repair following injury.展开更多
基金sponsored by the Guangdong Provincial Natural Science Foundation,No.S2012010009592the Science and Technology Talent Foundation of Guangdong Provincial Natural Science Foundation,No.30900725+2 种基金the Joint Research Program by Southern Medical University-Shunde Guizhou Hospital,No.09000608the Science Foshan Municipal Key Project in Medical Sciences,No.201008063and the Shunde Medical Research Program,No.2011050
文摘The sonic hedgehog protein not only plays a key role in early embryonic development, but also has essential effects on the adult nervous system, including neural stem cell proliferation, differentiation migration and neuronal axon guidance. The N-terminal fragment of sonic hedgehog is the key functional element in this process. Therefore, this study aimed to clone and analyze the N-terminal fragment of the sonic hedgehog gene. Total RNA was extracted from the notochord of a Sprague-Dawley rat at embryonic day 9 and the N-terminal fragment of sonic hedgehog was amplified by nested reverse transcription-PCR. The N-terminal fragment of the sonic hedgehog gene was successfully cloned. The secondary and tertiary structures of the N-terminal fragment of the sonic hedgehog protein were predicted using Jpred and Phyre online.
基金support from the National Institutes of Health(NIH 1 F30 MH110103)
文摘The primary cilium, a hair-like sensory organelle found on most mammalian cells, has gained recent attention within the field of neuroscience. Although neural primary cilia have been known to play a role in embryonic central nervous system patterning, we are just beginning to appreciate their importance in the mature organism. After several decades of investigation and controversy, the neural primary cilium is emerging as an important regulator of neuroplasticity in the healthy adult central nervous system. Further, primary cilia have recently been implicated in disease states such as cancer and epilepsy. Intriguingly, while primary cilia are expressed throughout the central nervous system, their structure, receptors, and signaling pathways vary by anatomical region and neural cell type. These differences likely bear relevance to both their homeostatic and neuropathological functions, although much remains to be uncovered. In this review, we provide a brief historical overview of neural primary cilia and highlight several key advances in the field over the past few decades. We then set forth a proposed research agenda to fill in the gaps in our knowledge regarding how the primary cilium functions and malfunctions in nervous tissue, with the ultimate goal of targeting this sensory structure for neural repair following injury.