The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for...The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.展开更多
Nowadays the development of green ship technology requires the vibration and noise control of oceangoing ships. The three-dimensional hydroelasticity theory of ships was previously extended to include the effect of fl...Nowadays the development of green ship technology requires the vibration and noise control of oceangoing ships. The three-dimensional hydroelasticity theory of ships was previously extended to include the effect of fluid compressibility. This enables the dynamic responses and the acoustic radiations of a ship excited by onboard machineries or fluid fluctuation loads to be predicted. In this paper the hydroelastic analysis and sonoelastic analysis methods are fixrther incorporated with the Green's function in the Pekeris ocean hydro-acoustic waveguide model to work out a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. As examples, the sound radiations of a floating elastic spherical shell excited by a concentrated force and a traveling LNG ship excited by the propeller induced pulsating forces acting on the wetted bottom plate of the stem in the shallow sea environment are predicted. The influences of the free surface and the sea bed on the generalized hydrodynamic coefficients and the acoustic pressure distributions in fluid domain are illustrated and discussed.展开更多
文摘The hydroelastic analysis and sonoelastic analysis methods are incorporated with the Green's function of the Pekeris ocean hydro-acoustic waveguide model to produce a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. The seabed condition is represented by a penetrable boundary of prescribed density and sound speed. This method is employed in this paper to predict the vibration and acoustic radiation of a 1 500 t Small Water Area Twin Hull (SWATH) ship in shallow sea acoustic environment. The wet resonant frequencies and radiation sound source levels are predicted and compared with the measured results of the ship in trial.
文摘Nowadays the development of green ship technology requires the vibration and noise control of oceangoing ships. The three-dimensional hydroelasticity theory of ships was previously extended to include the effect of fluid compressibility. This enables the dynamic responses and the acoustic radiations of a ship excited by onboard machineries or fluid fluctuation loads to be predicted. In this paper the hydroelastic analysis and sonoelastic analysis methods are fixrther incorporated with the Green's function in the Pekeris ocean hydro-acoustic waveguide model to work out a three-dimensional sonoelastic analysis method for ships in the ocean hydro-acoustic environment. As examples, the sound radiations of a floating elastic spherical shell excited by a concentrated force and a traveling LNG ship excited by the propeller induced pulsating forces acting on the wetted bottom plate of the stem in the shallow sea environment are predicted. The influences of the free surface and the sea bed on the generalized hydrodynamic coefficients and the acoustic pressure distributions in fluid domain are illustrated and discussed.