The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi...The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.展开更多
A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chloride...A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions.展开更多
Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were us...Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.展开更多
Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this stud...Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this study,the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium(IV)sulfate(300°C,400°C,450°C,500°C,and 650°C)was investigated.The reaction occurred in a high-pressure reactor containing nitrogen gas.Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst.The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate species at different temperatures.However,the acidic properties(strength and amount)of the catalyst did not change with the calcination temperature.The cerium(IV)sulfate calcined at 400°C exhibited the best catalytic performance,achieving the highest isosorbide yield(55.7%)and complete conversion of sorbitol at 180°C,20 bar of N2,and 6 h using CeSO-400.The presence of a sulfate group on the catalyst was the most important factor in determining the catalytic performance of sorbitol dehydration to isosorbide.This work suggests that CeSO-400 catalysts may play an important role in reducing reaction conditions.展开更多
The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. Th...The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.展开更多
Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation du...Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.展开更多
AIM: To study the possible causes of sorbitol (S)-based diarrhea and its mechanism of reduction by rice gruel (RG) in cecectomized rats. METHODS: S was dissolved either in distilled water or in RG (50 g/L) and ingeste...AIM: To study the possible causes of sorbitol (S)-based diarrhea and its mechanism of reduction by rice gruel (RG) in cecectomized rats. METHODS: S was dissolved either in distilled water or in RG (50 g/L) and ingested as a single oral dose (1.2 g/kg body mass, containing 0.5 g/L phenol red as a re-covery marker) by S (control) and S + RG groups (n = 7), respectively. This dose is over the laxative dose for hu-mans. Animals were sacrificed exactly 1 h after dose in-gestion, without any access to drinking water. The whole gastro-intestinal tract was divided into seven segments and sampled to analyze the S and marker remaining in its contents.RESULTS: Gastric-emptying and intestinal transit were comparatively slower in the S + RG group. Also, the S absorption index in the 3rd and last quarter of the small intestine (24.85 ± 18.88% vs 0.0 ± 0.0% and 39.09 ± 32.75% vs 0.0 ± 0.0%, respectively, P < 0.05) was sig-nificantly higher in the S + RG group than in the control group. The S absorption index and the intestinal fluid volume are inversely related to each other. CONCLUSION: The intestinal mal-absorption of S is the main reason for S-based osmotic diarrhea. Where RG en-hanced the absorption of S through passive diffusion, the degree of diarrhea was reduced in cecectomized rats.展开更多
An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase gluco...An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.展开更多
A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found tha...A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.展开更多
A series of alditol derivatives were designed and synthesized with relatively high yield. On the basis of reaction between sorbitol and a series of substituted benzaldehyde in the presence of an acid catalyst, a serie...A series of alditol derivatives were designed and synthesized with relatively high yield. On the basis of reaction between sorbitol and a series of substituted benzaldehyde in the presence of an acid catalyst, a series of acetal derivatives were synthesized through free hydroxyl esterification. D-sorbitol acetal amido derivatives were prepared by reduction of nitryl and acylation of amino. D-sorbitol acetal carboxyl esterification derivatives were prepared through esterification and hydrolysis. By high performance liquid chromatography-mass spectra (HPLC-MS) and 1H nuclear magnetic resonance spectra (1H-NMR), 36 compounds prepared were identified. Among these derivatives prepared, 26 compounds have not been reported in the previous literatures.展开更多
To check the applicabilities of the simple density equation and viscosity equation in the semi-ideal solution theory to nonelectrolyte solutions, the densities and viscosities were measured for the quaternary system m...To check the applicabilities of the simple density equation and viscosity equation in the semi-ideal solution theory to nonelectrolyte solutions, the densities and viscosities were measured for the quaternary system mannitol-sorbitol-D-glucose-HzO and its ternary subsystems mannitol-D-glucose-H2O and sorbitol-D-glucose-H2O at 298.15K. The results were used to test the applicability of the simple equations for the density and viscosity of the multicomponent nonelectrolyte solution. The agreements between the predicted and measured results are good.展开更多
A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of fie...A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.展开更多
AIM:To evaluate gastrointestinal(GI) symptoms and breath hydrogen responses to oral fructose-sorbitol(F-S) and glucose challenges in eating disorder(ED) patients.METHODS:GI symptoms and hydrogen breath concentration w...AIM:To evaluate gastrointestinal(GI) symptoms and breath hydrogen responses to oral fructose-sorbitol(F-S) and glucose challenges in eating disorder(ED) patients.METHODS:GI symptoms and hydrogen breath concentration were monitored in 26 female ED inpatients for 3 h,following ingestion of 50 g glucose on one day,and 25 g fructose/5 g sorbitol on the next day,after an overnight fast on each occasion.Responses to F-S were compared to those of 20 asymptomatic healthy females.RESULTS:F-S provoked GI symptoms in 15 ED patients and one healthy control(P < 0.05 ED vs control) .Only one ED patient displayed symptom provocation to glucose(P < 0.01 vs F-S response) .A greater symptom response was observed in ED patients with a body mass index(BMI) ≤ 17.5 kg/m 2 compared to those with a BMI > 17.5 kg/m 2(P < 0.01) .There were no differences in psychological scores,prevalence of functional GI disorders or breath hydrogen responses between patients with and without an F-S response.CONCLUSION:F-S,but not glucose,provokes GI symptoms in ED patients,predominantly those with low BMI.These findings are important in the dietary management of ED patients.展开更多
1,3:2,4-di-p-methylbenzylidene-D-sorbitol(MDBS)is known to be an efficient sorbitol derivative gelator.Two new sorbitol derivative gelators were designed and synthesized in contrast to MDBS in order to study the gel p...1,3:2,4-di-p-methylbenzylidene-D-sorbitol(MDBS)is known to be an efficient sorbitol derivative gelator.Two new sorbitol derivative gelators were designed and synthesized in contrast to MDBS in order to study the gel properties of gelators with different structures.Their gelation behavior to 30 solvents was investigated.It was found that the gelation behavior was related to the molecular structure of gelators.Compared with MDBS,the gelator with more hydroxyl in the molecular structure could gel water and that with more aromatic ring could gel aromatic solvent.The fibrous and three-dimensional network of the gels was obtained by scanning electron microscopy(SEM).Ultraviolet-visible(UV-Vis)spectroscopy revealed thatπ-πinteraction was one of the main driving forces for the formation of gels.Theπ-πstacking of gelation increases with the number of aromatic rings in the molecular structure of gelator.Fourier transform infrared(FT-IR)spectroscopy revealed that the hydrogen bonding was also the main driving force for the formation of gels.The layered structure of the gels was studied by X-ray diffraction(XRD).展开更多
A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated ...A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated for hydrogenolysis of cellulose in aqueous medium, in the presence of hydrogen to produce sorbitol as major product. Among all the catalysts tested in the present work, CuO/CeO2ZrO2?catalyst proved to be the most promising with high conversion (92%) and excellent selectivity (sorbitol 99.1%), at an intermediate reaction temperature of 245°C in a neutral aqueous solution without an aid of liquid phase acid. The catalyst was recyclable in repeated runs and no deactivation was observed even after five reaction cycles. CuO/CeO2-ZrO2 has been characterized by XRD, SEM, TPR and BET surface area techniques.展开更多
Mannitol or sorbitol was added into the Murashige and Skoog (MS) medium contain-ing certain concentrations of 6-Benzyladenine (BA) which was used to induce adventi-tious buds of Echinacea purpurea L. Results showed th...Mannitol or sorbitol was added into the Murashige and Skoog (MS) medium contain-ing certain concentrations of 6-Benzyladenine (BA) which was used to induce adventi-tious buds of Echinacea purpurea L. Results showed that the induced adventitious buds growing from medium added with 15 g·L-1 mannitol or sorbitol of the same con-centration were more consistent in height. The regeneration rates in MS medium containing 0.2 mg·L-1 BA and 15 g·L-1 mannitol were increased, while in MS medium containing 0.2 and 0.5 mg·L-1 BA, and 15 g·L-1 sorbitol, the regeneration rates were suppressed. On the other hand, genotype of explants and the concentration of BA in-fluenced the incidence of hyperhydricity, and the hyperhydricity of regenerated buds was more severe when the petiole explants were inoculated on medium with 15 g·L-1 mannitol or 15 g·L-1 sorbitol. The present study offers new possibility to the production of uniform plantlets for commercial cultivation in this important medicinal plant.展开更多
Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volu...Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process.展开更多
Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation(FBD) in loquat(Eriobotrya japonica Lindl.). Transcriptomic analysis suggested tha...Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation(FBD) in loquat(Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor(TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and β-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression.Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together,these results provide insight into bud formation in loquat and may be used in efforts to increase yield.展开更多
基金supported by the National Natural Science Foundation of China(22279063,52001170)Tianjin Natural Science Foundation(22JCYBJC00590)the Fundamental Research Funds for the Central Universities.We thank the Haihe Laboratoryof Sustainable Chemical Transformations for financial support.
文摘The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.
文摘A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions.
基金the financial support from the National Natural Science Foundation of China (Nos. 22178181 and 21876091)the Natural Science Foundation of Tianjin (No. 21JCZDJC00180)+1 种基金the Fundamental Research Funds for the Central Universities (Nankai University (No. 63213075))Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2018-06)。
文摘Ni-Ru bimetallic porous carbon sphere(Ni-Ru@PCS) catalysts were synthesized via formaldehyde-assisted, metal-coordinated crosslinking sol-gel chemistry, in which biomass-derived tannic acid and F127 surfactant were used as carbon precursor and soft template, respectively, and Ni2+and Ru3+were used as cross-linkers. In the developed method, Ni-Ru particles became uniformly dispersed in the carbon skeleton due to strong coordination bonds between metal ions(Ni2+and Ru^(3+)) and tannic acid molecules and bimetal interactions. The as-synthesized Ni-Ru10:1@PCS catalyst with a loading Ni:Ru mole ratio of 10:1 was applied for the selective hydrogenation of glucose to sorbitol, and provided 99% glucose conversion with a sorbitol selectivity of 100% at 140℃ in 150 min reaction time and exhibited good stability and recyclability in which sorbitol yield remained at 98% after 4 cycles with little or no metal agglomeration. The catalyst was applied to glucose solutions as high as 20 wt% with 97% sorbitol yields being obtained at 140℃ in 20 h. The developed bimetallic porous carbon sphere catalysts take advantage of sustainably-derived materials in their structure and are applicable to related biomass conversion reactions.
基金The authors appreciative and acknowledge the Faculty of Engineering,Khon Kaen University,Thailand,and the Graduate School,Khon Kaen University,Thailand,for supporting the Lecturer in Admitting High Potential Students to Study and Research in His Expert Program Year 2018(Grant No.611JT212)。
文摘Isosorbide is a multi-purpose chemical that can be produced from renewable resources.Specifically,it has been investigated as a replacement for toxic bisphenol A(BPA)in the production of polycarbonate(PC).In this study,the synthesis of isosorbide by sorbitol dehydration using a cerium-based catalyst derived from calcined cerium(IV)sulfate(300°C,400°C,450°C,500°C,and 650°C)was investigated.The reaction occurred in a high-pressure reactor containing nitrogen gas.Advanced instrumental techniques were applied to analyze the characteristics of the calcined catalyst.The results showed that the calcined catalysts demonstrated different crystalline structures and sulfate species at different temperatures.However,the acidic properties(strength and amount)of the catalyst did not change with the calcination temperature.The cerium(IV)sulfate calcined at 400°C exhibited the best catalytic performance,achieving the highest isosorbide yield(55.7%)and complete conversion of sorbitol at 180°C,20 bar of N2,and 6 h using CeSO-400.The presence of a sulfate group on the catalyst was the most important factor in determining the catalytic performance of sorbitol dehydration to isosorbide.This work suggests that CeSO-400 catalysts may play an important role in reducing reaction conditions.
文摘The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.
基金supported by the National Natural Science Foundation of China(21203183,21233008,21473188)~~
文摘Lactic acid is produced as a major byproduct during sorbitol hydrogenolysis under alkaline conditions.We investigated the effects of two different alkaline additives,Ca(OH)2 and La(OH)3,on lactic acid formation during sorbitol hydrogenolysis over Ni/C catalyst.In the case of Ca(OH)2,the selectivity of lactic acid was 8.9%.In contrast,the inclusion of La(OH)3 resulted in a sorbitol conversion of 99% with only trace quantities of lactic acid being detected.In addition,the total selectivity towards the C2 and C4 products increased from 20.0% to 24.5% going from Ca(OH)2 to La(OH)3.These results therefore indicated that La(OH)3 could be used as an efficient alkaline additive to enhance the conversion of sorbitol.Pyruvic aldehyde,which is formed as an intermediate during sorbitol hydrogenolysis,can be converted to both 1,2-propylene glycol and lactic acid by hydrogenation and rearrangement reactions,respectively.Notably,these two reactions are competitive.When Ca(OH)2 was used as an additive for sorbitol hydrogenolysis,both the hydrogenation and rearrangement reactions occurred.In contrast,the use of La(OH)3 favored the hydrogenation reaction,with only trace quantities of lactic acid being formed.
文摘AIM: To study the possible causes of sorbitol (S)-based diarrhea and its mechanism of reduction by rice gruel (RG) in cecectomized rats. METHODS: S was dissolved either in distilled water or in RG (50 g/L) and ingested as a single oral dose (1.2 g/kg body mass, containing 0.5 g/L phenol red as a re-covery marker) by S (control) and S + RG groups (n = 7), respectively. This dose is over the laxative dose for hu-mans. Animals were sacrificed exactly 1 h after dose in-gestion, without any access to drinking water. The whole gastro-intestinal tract was divided into seven segments and sampled to analyze the S and marker remaining in its contents.RESULTS: Gastric-emptying and intestinal transit were comparatively slower in the S + RG group. Also, the S absorption index in the 3rd and last quarter of the small intestine (24.85 ± 18.88% vs 0.0 ± 0.0% and 39.09 ± 32.75% vs 0.0 ± 0.0%, respectively, P < 0.05) was sig-nificantly higher in the S + RG group than in the control group. The S absorption index and the intestinal fluid volume are inversely related to each other. CONCLUSION: The intestinal mal-absorption of S is the main reason for S-based osmotic diarrhea. Where RG en-hanced the absorption of S through passive diffusion, the degree of diarrhea was reduced in cecectomized rats.
文摘An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.
基金This work was supported by the National Natural Science Foundation of China (No.51376185 and No.51106108), the National Basic Research Program of China (No.2012CB215304), the National High Technology Research and Development Program of China (No.2012AA101806), and the Natural Science Foundation of Guangdong Province (No.$2013010011612).
文摘A series of Ni based catalysts with different supports and basic additives were prepared by sequential impregnation method. The catalysts were characterized by XRD, BET, H2-TPR and CO2-TPD techniques. It was found that the introduction of basic additives enhanced the basicities of catalyats and promoted the dispersities of Ni particles by strong interaction between Ni2+ and basic additives. Among the Ni based catalysts, 10%Ni/10%La203/ZrO2 showed the superior performance in sorbitol hydrogenolysis. The synergistic effect of Ni and La203 was proven to play an essential role in selective synthesis of EG and 1,2-PG. In the optimal reaction condition, the catalyst presented 100% sorbitol conversion and over 48% glycols (EG and 1,2-PG) yield. The kinetics study of polyols (sorbitol, xylitol and glycerol) hydrogenolysis showed that polyols with more hydroxyl number have higher activity and products distribution was final results of kinetic balance, which could give us some inspiration abeut how to change the products selectivity.
基金National Natural Science Foundation of China (No 20306022)
文摘A series of alditol derivatives were designed and synthesized with relatively high yield. On the basis of reaction between sorbitol and a series of substituted benzaldehyde in the presence of an acid catalyst, a series of acetal derivatives were synthesized through free hydroxyl esterification. D-sorbitol acetal amido derivatives were prepared by reduction of nitryl and acylation of amino. D-sorbitol acetal carboxyl esterification derivatives were prepared through esterification and hydrolysis. By high performance liquid chromatography-mass spectra (HPLC-MS) and 1H nuclear magnetic resonance spectra (1H-NMR), 36 compounds prepared were identified. Among these derivatives prepared, 26 compounds have not been reported in the previous literatures.
基金Supported by the National Natural Science Foundation of China (No.20276037)
文摘To check the applicabilities of the simple density equation and viscosity equation in the semi-ideal solution theory to nonelectrolyte solutions, the densities and viscosities were measured for the quaternary system mannitol-sorbitol-D-glucose-HzO and its ternary subsystems mannitol-D-glucose-H2O and sorbitol-D-glucose-H2O at 298.15K. The results were used to test the applicability of the simple equations for the density and viscosity of the multicomponent nonelectrolyte solution. The agreements between the predicted and measured results are good.
基金Funded by Science and Technology Support Program of Hubei Province of China(No.2015BAA111)
文摘A 1-octadecanol(OD)/1,3:2,4-di-(3,4-dimethyl) benzylidene sorbitol(DMDBS)/expander graphite(EG) composite was prepared as a form-stable phase change material(PCM) by vacuum melting method. The results of field emission-scanning electron microscopy(FE-SEM) showed that 1-octadecanol was restricted in the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. X-ray diffraction(XRD) and Fourier transform infrared spectroscopy(FT-IR) results showed that no chemical reaction occurred among the components of composite PCM in the preparation process. The gel-to-sol transition temperature of the composite PCMs containing DMDBS was much higher than the melting point of pure 1-octadecanol. The improvements in preventing leakage and thermal stability limits were mainly attributed to the synergistic effect of the three-dimensional network formed by DMDBS and the honeycomb network formed by EG. Differential scanning calorimeter(DSC) was used to determine the latent heat and phase change temperature of the composite PCMs. During melting and freezing process the latent heat values of the PCM with the composition of 91% OD/3% DMDBS/6% EG were 214.9 and 185.9 kJ·kg-1, respectively. Its degree of supercooling was only 0.1 ℃. Thermal constant analyzer results showed that its thermal conductivity(κ) changed up to roughly 10 times over that of OD/DMDBS matrix.
文摘AIM:To evaluate gastrointestinal(GI) symptoms and breath hydrogen responses to oral fructose-sorbitol(F-S) and glucose challenges in eating disorder(ED) patients.METHODS:GI symptoms and hydrogen breath concentration were monitored in 26 female ED inpatients for 3 h,following ingestion of 50 g glucose on one day,and 25 g fructose/5 g sorbitol on the next day,after an overnight fast on each occasion.Responses to F-S were compared to those of 20 asymptomatic healthy females.RESULTS:F-S provoked GI symptoms in 15 ED patients and one healthy control(P < 0.05 ED vs control) .Only one ED patient displayed symptom provocation to glucose(P < 0.01 vs F-S response) .A greater symptom response was observed in ED patients with a body mass index(BMI) ≤ 17.5 kg/m 2 compared to those with a BMI > 17.5 kg/m 2(P < 0.01) .There were no differences in psychological scores,prevalence of functional GI disorders or breath hydrogen responses between patients with and without an F-S response.CONCLUSION:F-S,but not glucose,provokes GI symptoms in ED patients,predominantly those with low BMI.These findings are important in the dietary management of ED patients.
基金Supported by National Natural Science Foundation of China(No.21276188)
文摘1,3:2,4-di-p-methylbenzylidene-D-sorbitol(MDBS)is known to be an efficient sorbitol derivative gelator.Two new sorbitol derivative gelators were designed and synthesized in contrast to MDBS in order to study the gel properties of gelators with different structures.Their gelation behavior to 30 solvents was investigated.It was found that the gelation behavior was related to the molecular structure of gelators.Compared with MDBS,the gelator with more hydroxyl in the molecular structure could gel water and that with more aromatic ring could gel aromatic solvent.The fibrous and three-dimensional network of the gels was obtained by scanning electron microscopy(SEM).Ultraviolet-visible(UV-Vis)spectroscopy revealed thatπ-πinteraction was one of the main driving forces for the formation of gels.Theπ-πstacking of gelation increases with the number of aromatic rings in the molecular structure of gelator.Fourier transform infrared(FT-IR)spectroscopy revealed that the hydrogen bonding was also the main driving force for the formation of gels.The layered structure of the gels was studied by X-ray diffraction(XRD).
文摘A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated for hydrogenolysis of cellulose in aqueous medium, in the presence of hydrogen to produce sorbitol as major product. Among all the catalysts tested in the present work, CuO/CeO2ZrO2?catalyst proved to be the most promising with high conversion (92%) and excellent selectivity (sorbitol 99.1%), at an intermediate reaction temperature of 245°C in a neutral aqueous solution without an aid of liquid phase acid. The catalyst was recyclable in repeated runs and no deactivation was observed even after five reaction cycles. CuO/CeO2-ZrO2 has been characterized by XRD, SEM, TPR and BET surface area techniques.
文摘Mannitol or sorbitol was added into the Murashige and Skoog (MS) medium contain-ing certain concentrations of 6-Benzyladenine (BA) which was used to induce adventi-tious buds of Echinacea purpurea L. Results showed that the induced adventitious buds growing from medium added with 15 g·L-1 mannitol or sorbitol of the same con-centration were more consistent in height. The regeneration rates in MS medium containing 0.2 mg·L-1 BA and 15 g·L-1 mannitol were increased, while in MS medium containing 0.2 and 0.5 mg·L-1 BA, and 15 g·L-1 sorbitol, the regeneration rates were suppressed. On the other hand, genotype of explants and the concentration of BA in-fluenced the incidence of hyperhydricity, and the hyperhydricity of regenerated buds was more severe when the petiole explants were inoculated on medium with 15 g·L-1 mannitol or 15 g·L-1 sorbitol. The present study offers new possibility to the production of uniform plantlets for commercial cultivation in this important medicinal plant.
文摘Isosorbide is a novel bio-based material derived as a secondary dehydration product of sorbitol.This work focuses on the kinetics of sulfuric acid-catalyzed dehydration of sorbitol under conditions of nonconstant volume.Herein,the effects of stirring rate,catalyst dosage,reaction temperature,and reaction time on the dehydration reaction of sorbitol were investigated.The yield of isosorbide up to 77.13%was obtained after 1.5 h of reaction time under conditions of 2 kPa,1.0%(mass)catalyst dosage,and 413.15 K.Based on the sorbitol dehydration reaction mechanism and a simplified reaction network,a kinetic model was developed in this work.A good agreement was accomplished between kinetic modeling and experiments between 393.15 and 423.15 K.The fitting results indicate that side reactions with higher activation energies are more affected by reaction temperatures,and the main side reaction that influences the selectivity of isosorbide is the oligomerization reaction among the primary dehydration products of sorbitol.The model fitting of the catalyst amounts effect shows that the effective concentration of sulfuric acid would be reduced with the increase of dosage due to the molecular agglomeration effect.Hopefully,the kinetic experiments and modeling results obtained in this work will be helpful to the design and optimization of the industrial sorbitol dehydration process.
基金the financial support by the National Key R&D Program of China (2020YFD100103)the Major Science and Technology Project of New Agricultural Variety Breeding in Zhejiang Province (2021C02066-3)+1 种基金the Six Party Program of Agriculture, Rural Areas, and Farmers in Zhejiang Province (2020SNLF025)the Major Agricultural Technology Collaborative Promotion Program in Zhejiang Province (2022XTTGGP02)。
文摘Sorbitol is an important signaling molecule in fruit trees. Here, we observed that sorbitol increased during flower bud differentiation(FBD) in loquat(Eriobotrya japonica Lindl.). Transcriptomic analysis suggested that bud formation was associated with the expression of the MADS-box transcription factor(TF) family gene, EjCAL. RNA fluorescence in situ hybridization showed that EjCAL was enriched in flower primordia but hardly detected in the shoot apical meristem. Heterologous expression of EjCAL in Nicotiana benthamiana plants resulted in early FBD. Yeast-one-hybrid analysis identified the ERF12 TF as a binding partner of the EjCAL promoter. Chromatin immunoprecipitation-PCR confirmed that EjERF12 binds to the EjCAL promoter, and β-glucuronidase activity assays indicated that EjERF12 regulates EjCAL expression.Spraying loquat trees with sorbitol promoted flower bud formation and was associated with increased expression of EjERF12 and EjCAL. Furthermore, we identified EjUF3GaT1 as a target gene of EjCAL and its expression was activated by EjCAL. Function characterization via overexpression and RNAi reveals that EjUF3GaT1 is a biosynthetic gene of flavonoid hyperoside. The concentration of the flavonoid hyperoside mirrored that of sorbitol during FBD and exogenous hyperoside treatment also promoted loquat bud formation. We identified a mechanism whereby EjCAL might regulate hyperoside biosynthesis and confirmed the involvement of EjCAL in flower bud formation in planta. Together,these results provide insight into bud formation in loquat and may be used in efforts to increase yield.