This paper reports the first successful isolation of protoplasts from G racilariopsis bailiniae and their callus formation. The base solution type, concentration of isolating enzymes, concentration of sorbitol, incuba...This paper reports the first successful isolation of protoplasts from G racilariopsis bailiniae and their callus formation. The base solution type, concentration of isolating enzymes, concentration of sorbitol, incubation time, temperature and pH of the enzyme solution were tested to optimize the protoplast yield. The optimized isolation conditions were: 40% base solution 3(deionized water containing 25 mmol/L MESTris and 25 mmol/L CaCl 2 ·2 H 2 O) and 60% crude Marinomonas sp. YS-70 agarase solution, containing 2% w/v cellulase, 1% w/v macerozyme R-10 and 0.4 mol/L sorbitol, with incubation for 4 h at 28°C and pH 6.5. The highest yield of viable protoplasts, which was obtained in these conditions, was(1.75±0.25)×10 6 cells/g fresh weight. Cell wall regeneration of most protoplasts from G. bailiniae was complete within 60 h and the first division of cells happened after ≥3 days. Two division types were observed in the first division of protoplasts from G. bailiniae— asymmetric division and symmetric division. After the first division, the cells underwent a series of divisions to form callus cell masses.展开更多
Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell gener...Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however, indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.展开更多
基金Supported by the China Agriculture Research System(No.CARS-50)the Science and Technology Program of Guangdong Province of China(Nos.2016A020222023,2015B090903081)the Project of Guangdong Province Education Department(No.2017KCXTD014)
文摘This paper reports the first successful isolation of protoplasts from G racilariopsis bailiniae and their callus formation. The base solution type, concentration of isolating enzymes, concentration of sorbitol, incubation time, temperature and pH of the enzyme solution were tested to optimize the protoplast yield. The optimized isolation conditions were: 40% base solution 3(deionized water containing 25 mmol/L MESTris and 25 mmol/L CaCl 2 ·2 H 2 O) and 60% crude Marinomonas sp. YS-70 agarase solution, containing 2% w/v cellulase, 1% w/v macerozyme R-10 and 0.4 mol/L sorbitol, with incubation for 4 h at 28°C and pH 6.5. The highest yield of viable protoplasts, which was obtained in these conditions, was(1.75±0.25)×10 6 cells/g fresh weight. Cell wall regeneration of most protoplasts from G. bailiniae was complete within 60 h and the first division of cells happened after ≥3 days. Two division types were observed in the first division of protoplasts from G. bailiniae— asymmetric division and symmetric division. After the first division, the cells underwent a series of divisions to form callus cell masses.
基金Supported by an Australian Research Council Centre of Excellence Grant to The University of Newcastle Node of the Centre of Excellence for Integrative Legume Research (to R.J.R.)
文摘Organelles form essential compartments of all eukaryotic cells. Mechanisms that ensure the unbiased inheritance of organelles during cell division are therefore necessary to maintain the viability of future cell generations. Although inheritance of organelles represents a fundamental component of the cell cycle, surprisingly little is known about the underlying mechanisms that facilitate unbiased organelle inheritance. Evidence from a select number of studies, however, indicates that ordered organelle inheritance strategies exist in dividing cells of higher plants. The basic requirement for unbiased organelle inheritance is the duplication of organelle volume and distribution of the resulting organelle populations in a manner that facilitates unbiased partitioning of the organelle population to each daughter cell. Often, partitioning strategies are specific to the organelle, being influenced by the functional requirements of the organelle and whether the cells are mitotically active or re-entering into the cell cycle. Organelle partitioning mechanisms frequently depend on interactions with either the actin or microtubule cytoskeleton. In this focused review, we attempt to summarize key findings regarding organelle partitioning strategies in dividing cells of higher plants. We particularly concentrate on the role of the cytoskeleton in mediating unbiased organelle partitioning.