In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to ...In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to avoid severe environmental stresses during these sensitive stages. The hypothesis of the study was that late May planting improves grain sorghum yield and yield components compared with late June planting. The objectives of this research were to investigate the influence of planting dates yield and yield components of different grain sorghum hybrids, and to determine the optimal planting date and hybrid combination for maximum biomass and grains production. Three sorghum hybrids (early, medium, and late maturing) were planted in late May and late June without irrigation in Kansas at Manhattan/Ashland Bottom Research Station, and Hutchinson in 2010;and at Manhattan/North Farm and Hutchinson in 2011. Data on dry matter production, yield and yield components were collected. Grain yield and yield components were influenced by planting date depending on environmental conditions. At Manhattan (2010), greater grain yield, number of heads per plant, were obtained with late-June planting compared with late May planting, while at Hutchinson (2010) greater yield was obtained with late May planting for all hybrids. The yield component most affected at Hutchinson was the number of kernels∙panicle<sup>−1</sup> and plant density. Late-May planting was favorable for late maturing hybrid (P84G62) in all locations. However, the yield of early maturing hybrid (DKS 28-05) and medium maturing hybrid (DKS 37-07) was less affected by delayed planting. The effects of planting dates on yield and yield components of grain sorghum hybrids were found to be variable among hybrid maturity groups and locations.展开更多
Sucrose nonfermenting-related protein kinase 1(SnRK1)is one of the critical serine/threonine protein kinases.It commonly mediates plant growth and development,cross-talks with metabolism processes and physiological re...Sucrose nonfermenting-related protein kinase 1(SnRK1)is one of the critical serine/threonine protein kinases.It commonly mediates plant growth and development,cross-talks with metabolism processes and physiological responses to biotic or abiotic stresses.It plays a key role in distributing carbohydrates and sugar signal transporting.In the present study,eight SnRK1 coding genes were identified in sorghum(Sorghum bicolor L.)via sequences alignment,with three forαsubunits(SnRK1α1 to SnRK1α3),three forβ(SnRK1β1 to SnRK1β3),and one for bothγ(SnRK1γ)andβγ(SnRK1βγ).These eight corresponding genes located on five chromosomes(Chr)of Chr1–3,Chr7,and Chr9 and presented collinearities to SnRK1s from maize and rice,exhibiting highly conserved domains within the same subunits from the three kinds of cereals.Expression results via qRT-PCR showed that different coding genes of SnRK1s in sorghum possessed similar expression patterns except for SnRK1α3 with a low expression level in grains and SnRK1β2 with a relatively high expression level in inflorescences.Results of subcellular localization in sorghum leaf protoplast showed that SnRK1α1/α2/α3/γmainly located on organelles,while the rest four of SnRK1β1/β2/β3/βγlocated on both membranes and some organelles.Besides,three combinations were discovered among eight SnRK1 subunits in sorghum through yeast two hybrid,includingα1-β2-βγ,α2-β3-γ,andα3-β3-γ.These results provide informative references for the following functional dissection of SnRK1 subunits in sorghum.展开更多
According to many years of experimental summary, regulations on planting technique of harmless feeding Sorghum bicolor (L.) Moenchwere studied from the application scope, basic demands of planting, preparation be fo...According to many years of experimental summary, regulations on planting technique of harmless feeding Sorghum bicolor (L.) Moenchwere studied from the application scope, basic demands of planting, preparation be fore seeding, demands of seeding, field management, clipping and harvesting, transportation, storage, ledger management and other technical requirements, and specific measures and technical indicators of the technical regulations were analyzed, so as to provide normalized, standardized, industrial and marketization technical support for the planting of harmless feeding S. bicolor (L.) Moench.展开更多
Sugar transporters are essential for osmotic process regulation,various signaling pathways and plant growth and development.Currently,few studies are available on the function of sugar transporters in sorghum(Sorghum ...Sugar transporters are essential for osmotic process regulation,various signaling pathways and plant growth and development.Currently,few studies are available on the function of sugar transporters in sorghum(Sorghum bicolor L.).In this study,we performed a genome-wide survey of sugar transporters in sorghum.In total,98 sorghum sugar transporters(SSTs)were identified via BLASTP.These SSTs were classified into three families based on the phylogenetic and conserved domain analysis,including six sucrose transporters(SUTs),23 sugars will eventually be exported transporters(SWEETs),and 69 monosaccharide transporters(MSTs).The sorghum MSTs were further divided into seven subfamilies,including 24 STPs,23 PLTs,two VGTs,four INTs,three p Glc T/SBG1 s,five TMTs,and eight ERDs.Chromosomal localization of the SST genes showed that they were randomly distributed on 10 chromosomes,and substantial clustering was evident on the specific chromosomes.Twenty-seven SST genes from the families of SWEET,ERD,STP,and PLT were found to cluster in eight tandem repeat event regions.In total,22 SSTs comprising 11 paralogous pairs and accounting for 22.4%of all the genes were located on the duplicated blocks.The different subfamilies of SST proteins possessed the same conserved domain,but there were some differences in features of the motif and transmembrane helices(TMH).The publicly-accessible RNA-sequencing data and real-time PCR revealed that the SST genes exhibited distinctive tissue specific patterns.Functional studies showed that seven SSTs were mainly located on the cell membrane and membrane organelles,and 14 of the SSTs could transport different types of monosaccharides in yeast.These findings will help us to further elucidate their roles in the sorghum sugar transport and sugar signaling pathways.展开更多
Sorghum metabolism continually adapts to environmental temperature as thermal patterns modulate diurnally and seasonally. The degree of adaptation to any given temperature may be difficult to determine from phenotypic...Sorghum metabolism continually adapts to environmental temperature as thermal patterns modulate diurnally and seasonally. The degree of adaptation to any given temperature may be difficult to determine from phenotypic responses of the plants. The present study was designed to see if the efficiency of quantum yield of photosystem II could be used as a measure of how well leaf tissue metabolism was able to withstand a prolonged respiratory demand caused by elevated temperatures. The efficiency of quantum yield values of Pioneer 84G62 and Northrup King KS585 commercial sorghum hybrids showed that when the hybrids were grown in a 28°C/20°C day/night cycle in the greenhouse or the field, Pioneer hybrid 84G62 withstood subsequent elevated thermal challenges better than Northrup King KS585. The same hybrids grown in a 39°C/32°C day/night cycle showed similar efficiency of quantum yield values when thermally challenged. Water-deficit stress increased the heat resistance of the tissue raising the efficiency of quantum yield of both lines to the same level. Upon recovery from the water deficit stress the differential efficiency of quantum yield values between the two lines re-appeared. The data provided in this study suggest a metabolic advantage of Pioneer 84G62 to environmental thermal challenges compared with the Northrup King KS585.展开更多
The Primacy question addressed in our study is: Is the difterntial expression of rbcL gene in mesophyll cells and in bundle sheath cells related to the sequence of the gene per se?An enzymatic approach was fist establ...The Primacy question addressed in our study is: Is the difterntial expression of rbcL gene in mesophyll cells and in bundle sheath cells related to the sequence of the gene per se?An enzymatic approach was fist established to separate the two groups of cells. Microscopic examination revealed satisfactory separation effect: minimal mutual contamination was found so that no mistake might be introduced into biochemical or molecular biological expeitments using such preparations. CpDNA were isolated from mesophyll cells and from bundle sheath cells and coding region of rbcL gene was obtained from each by PCR ampilfication.Cloning and sequencing were then done on them.Compartive analysis , however, revealed identical sequence, with a length of 1,368 bp, encoding 456 amino acids. Since sequences of the non-coding regions of rbcL gene in masephyll sad bundle sheath have not been obtained, it can not yet be concluded that the differential expression is not related to the sequence itself. Nevertheless,It sesems justifiable to infer that whatever difference there may be between the sequences of rbcL gene in two groups of cells can only be found in the non-coding regions(including promoter and the 3' down stream region).展开更多
Drought stress affects the growth and productivity of crop plants including sorghum.To study the molecular basis of drought tolerance in sorghum,we conducted the transcriptomic profiling of sorghum leaves and roots un...Drought stress affects the growth and productivity of crop plants including sorghum.To study the molecular basis of drought tolerance in sorghum,we conducted the transcriptomic profiling of sorghum leaves and roots under drought stress using RNA-Seq method.A total of 510,559,and 3 687 differentially expressed genes(DEGs)in leaves,3 368,5 093,and 4 635 DEGs in roots responding to mild drought,severe drought,and re-watering treatments were identified,respectively.Among them,190 common DEGs in leaves and 1 644 common DEGs in roots were responsive to mild drought,severe drought,and re-watering environment.Gene Ontology(GO)enrichment analysis revealed that the GO categories related to drought tolerance include terms related to response to stimulus especially response to water deprivation,abscisic acid stimulus,and reactive oxygen species.The major transcription factor genes responsive to drought stress include heat stress transcription factor(HSF),ethylene-responsive transcription factor(ERF),Petunia NAM,Arabidopsis ATAF1/2 and CUC2(NAC),WRKY transcription factor(WRKY),homeodomain leucine zipper transcription factor(HD-ZIP),basic helix-loop-helix transcription factor(bHLH),and V-myb myeloblastosis viral oncogene homolog transcription facotr(MYB).Functional protein genes for heat shock protein(HSPs),late-embryogenesis-abundant protein(LEAs),chaperones,aquaporins,and expansins might play important roles in sorghum drought tolerance.Moreover,the genomic regions enriched with HSP,expansin,and aquaporin genes responsive to drought stress could be used as powerful targets for improvement of drought tolerance in sorghum and other cereals.Overall,our results provide a genome-wide analysis of DEGs in sorghum leaves and roots under mild drought,severe drought,and re-watering environments.This study contributes to a better understanding of the molecular basis of drought tolerance of sorghum and can be useful for crop improvement.展开更多
Apomictic seed development is a complex process including formation of unreduced embryo sac,parthenogenetic embryo development from the egg cell,and endosperm formation either autonomously,or due to fertilization of p...Apomictic seed development is a complex process including formation of unreduced embryo sac,parthenogenetic embryo development from the egg cell,and endosperm formation either autonomously,or due to fertilization of polar nuclei by the sperm(under pseudogamous form of apomixis).In the latter case,an obstacle to the normal endosperm development is disturbance of maternal(m)-to-paternal(p)genomic ratio 2m:1p that occurs in the cases of pollination of unreduced embryo sac with haploid sperms.Usage of tetraploid pollinators can overcome this problem because in such crosses maternal-to-paternal genomic ratio is 4m:2p that provides formation of kernels with plump endosperm.Using tetraploid lines as pollen parents we observed formation of plump kernels on the ears and panicles of diploid maize and sorghum accessions.These kernels had hybrid endosperm and diploid maternal-type embryo or hybrid embryo with different ploidy level(2n,3n,4n).The frequencies of plump kernels on the ear ranged from 0.2-0.3%to 5.7-6.2%counting from the number of ovaries.Maternal-type plants were found in two maize lines,their frequency varying from 10.7 to 37.5%of the progeny plants.In CMS-lines of sorghum pollinated with tetraploid sorghum accessions,the frequency of plump kernels ranged from 0.6 to 14.0%counting from the number of ovaries;the frequency of maternal-type plants varied from 33.0 up to 96.1%.The hybrid nature of endosperm of the kernels that gave rise to maternal-type plants has been proved by marker gene expression and by SDS-electrophoresis of endosperm proteins.These data testify to variable modes of seed formation under diploid×tetraploid crosses in maize and sorghum both by amphi-and by apomixis.Therefore,usage of tetraploid pollinators might be a promising approach for isolation of apomixis in maize and sorghum accessions.展开更多
Use of cytoplasmic male sterility (CMS) in hybrid breeding requires effective male fertility-restoring lines. In sorghum, very few restoring lines that can restore fertility in A_3 CMS have been reported. To identify ...Use of cytoplasmic male sterility (CMS) in hybrid breeding requires effective male fertility-restoring lines. In sorghum, very few restoring lines that can restore fertility in A_3 CMS have been reported. To identify the reasons for this deficiency, F_1 and F_2 hybrids of an A_3 CMS line crossed with the line IS1112C, a donor of fertility-restoring (Rf) genes for A_3 cytoplasm, and testcrosses of fertile plants to A_3CMS lines were grown under contrasting water availability regimes in dryland and irrigated field plots. In the irrigated plots the frequency of fertile plants in testcrosses was twice that in dryland plots (P < 0.05). Fertile plants from the F_2 family grown in the irrigated plots showed significantly higher restoration ability than fertile plants from the same family grown in dryland plots. F_3 plants from the F_2 family grown in irrigated plots yielded on average a sixfold higherfrequency of fertile plants in testcrosses than F_3 plants derived from dryland plots (P < 0.01).Fertility of testcross hybrids correlated negatively with air vapor pressure deficit (VPD) at flowering (r = - 0.96; P < 0.01) suggesting that VPD is a trigger for downregulation of Rf genes for A_3 cytoplasm.展开更多
The presence of facultative apomixis In line 296B was proved by the embryologicalstudy.The twin embryosacs were observed at florescence.The autonomous development of em-bryo was confirmed by multiple cell proembryo ex...The presence of facultative apomixis In line 296B was proved by the embryologicalstudy.The twin embryosacs were observed at florescence.The autonomous development of em-bryo was confirmed by multiple cell proembryo existing with undeveloped polar nuclei In one embryosac.Cell structure and size of apomictic proembryo were different from sexual proembryo.The structural feature of proembryo can be used to distinguish apomictic proembryo with devel-oped endosperm from sexual embryo.The apomictic development in this line is attributed toaposporous type.The frequency of apomixis Is at least 16—21%.The apomictic characters andthe potential for fixing heterosis in line 296B was dlscussed in the present paper.展开更多
Investigation of male sterility mutations is an effective approach for identification of genes involved in anther and pollen development. The comparison of “cytological phenotypes” of newly induced mutants with phen...Investigation of male sterility mutations is an effective approach for identification of genes involved in anther and pollen development. The comparison of “cytological phenotypes” of newly induced mutants with phenotypes determined by already known genes favors elucidation of genetic control of diverse microsporo- and gametogenesis stages. In this paper, we describe pollen development in the grain sorghum line Zh10-asc1 with mutation of male sterility. This line was obtained from callus culture treated by sodium ascorbate. A wide spectrum of abnormalities in microsporogenesis have been found, such as cytomixis, chromosomal laggards, chromosome disjunction, adhesion of chromosomes, disturbed cytokinesis, and others. In tapetum, the cells with one nucleus, with unequal nuclei, and with micronuclei have been observed. During pollen grain (PG) maturation abnormalities in starch accumulation and delay of development often took place. In mature anthers, a variety of pollen grain types have been revealed: fertile, of irregular shape, incompletely filled with starch, PGs delayed at the uni-nucleate or bi-nucleate gametophyte stages, with partially or fully degenerated contents, and with abnormal coloration. Variation in spectrum and the frequency of disturbances between the flowers of one and the same plant have been revealed. The reasons for significant genetic and epigenetic instability are discussed.展开更多
Salt stress limits plant growth and development.In this study,changes in membrane lipids were investigated in leaves of sorghum seedlings subjected to salt stress(150 mmol L^(-1)NaCl).Galactolipids(DGDG and MGDG)accou...Salt stress limits plant growth and development.In this study,changes in membrane lipids were investigated in leaves of sorghum seedlings subjected to salt stress(150 mmol L^(-1)NaCl).Galactolipids(DGDG and MGDG)accounted for more than 65%of the total glycerolipids in sorghum leaves.The predominance of C36 molecular species in MGDG suggested that sorghum is an 18:3 plant.Under Na Cl treatment,the content of major phospholipids(PC and PE)increased,accompanied by the activation of their metabolism pathways at the transcriptional level.In contrast,the proportion of MGDG and PG dropped drastically,leading to a decreased ratio of plastidic to non-plastidic lipids.An adjustment of glycerolipid pathway between the cytosolic and plastidic compartments was triggered by salt stress,as reflected by the increased conversion of PC to PA,providing precursors for galactolipid synthesis.The elevated DGDG resulted in increased DGDG/MGDG and bilayer/non-bilayer lipid ratios.The double-bond index of PC,PE,and DGDG increased markedly,evidently owing to the increased expression of FAD3 and FAD8.These findings will be helpful for understanding dynamic membrane lipid changes and adaptive lipid remodeling in sorghum response to salt stress.展开更多
Sorghum has become ever more prominent on the global energy scene, with studies in the area becoming extremely important. Agricultural production in the semi-arid region of the Brazilian Northeast is intrinsically dep...Sorghum has become ever more prominent on the global energy scene, with studies in the area becoming extremely important. Agricultural production in the semi-arid region of the Brazilian Northeast is intrinsically dependent on rainfall in the region. However, on both inter- and intra-annual scales, the rainfall regime is quite irregular. The aim of this study was to evaluate the productivity of sorghum grown under a rainfed regime, and the water-use efficiency of crops in the semi-arid region of the northeast of Brazil. The work was carried out in the city of Tabuleiro do Norte in the semi-arid region of the State of Ceará. Mean productivity of the sorghum was 919.42 kg·ha-1, with maximum values being recorded for lot 02 (1032 kg·ha-1), lot 03 (1102 kg·ha-1), lot 04 (2143 kg·ha-1) and lot 12 (1367 kg·ha-1). The greatest value for water-use efficiency, 1.13 m3·kg-1, was found for lot 04, while the smallest value, 4.83 m3·kg-1 was seen in lot 02. It was found that the low productivity of sorghum in a rainfed regime shows that the lack of success in production systems in semi-arid regions is not due to the total amount of rainfall, but rather the spatial and temporal distribution of the rains, as well as the occurrence of hot, dry spells. Furthermore, it can be seen that the best ratio of grain production to water demand shows a strong correlation with the distribution of water throughout the cycle, and not only with the total volume.展开更多
Sorghum (<i>Sorghum</i><span> <i>bicolor</i></span> (L.) Moench) is one of the world’s leading cereal crops in agricultural production, which has a special importance in the arid r...Sorghum (<i>Sorghum</i><span> <i>bicolor</i></span> (L.) Moench) is one of the world’s leading cereal crops in agricultural production, which has a special importance in the arid regions. However, unlike other cereals, sorghum grain has a lower nutritional value, which is caused, inter alia, by the resistance of its seed storage proteins (kafirins) to protease digestion. One of the effective approaches to improve the nutritional value of sorghum grain is to obtain mutants with partially or completely suppressed synthesis or altered amino acid composition of kafirins. The employment of genome editing may allow to solve this problem by introducing mutations into the nucleotide sequences of the <i>α</i>- and <i>γ</i>-kafirin genes. In this study, genomic target motifs (23 bp sequences) were selected for the introduction of mutations into the <i>α-</i> and <i>γ-KAFIRIN</i> genes of sorg<span>hum. The design of the gRNAs was conducted using the online tools</span> CRISPROR and CHOPCHOP. <a name="_Hlk55317737"></a>Two most suitable targets were chosen for <i>α-KAFIRIN</i> (<i>k</i><span>1<i>C</i>5</span>) and two for <i>γ-KAFIRIN</i> (<i>gKAF</i><span>1</span>) genes. The insertion of respective sequences in the generic vector pSH121 was performed at the <i>BsaI</i> (<i>Eco</i><span>31<i>I</i></span>) sites. Validation of the cloning procedure was performed by DNA sequencing. Subcloning of the resulting constructs was performed using the <i>SfiI</i> restriction sites into the compatible binary vector B479p7oUZm-LH. The correct assembly of binary vectors was confirmed by restriction analysis using the <i>MluI</i> and <i>SfiI</i> cleavage sites. The four vectors created (1C</span><span style="font-family:""> </span><span style="font-family:"">-</span><span style="font-family:""> </span><span style="font-family:"">4C) were transferred by electroporation into the <i>Agrobacterium</i><span> <i>tumefaciens</i></span> strain AGL0. Currently, this vector series is used for stable transformation of sorghum using immature embryo explants.展开更多
文摘In Kansas, productivity of grain sorghum [Sorghum bicolor (L.) Moench] is affected by weather conditions at planting and during pollination. Planting date management and selection of hybrid maturity group can help to avoid severe environmental stresses during these sensitive stages. The hypothesis of the study was that late May planting improves grain sorghum yield and yield components compared with late June planting. The objectives of this research were to investigate the influence of planting dates yield and yield components of different grain sorghum hybrids, and to determine the optimal planting date and hybrid combination for maximum biomass and grains production. Three sorghum hybrids (early, medium, and late maturing) were planted in late May and late June without irrigation in Kansas at Manhattan/Ashland Bottom Research Station, and Hutchinson in 2010;and at Manhattan/North Farm and Hutchinson in 2011. Data on dry matter production, yield and yield components were collected. Grain yield and yield components were influenced by planting date depending on environmental conditions. At Manhattan (2010), greater grain yield, number of heads per plant, were obtained with late-June planting compared with late May planting, while at Hutchinson (2010) greater yield was obtained with late May planting for all hybrids. The yield component most affected at Hutchinson was the number of kernels∙panicle<sup>−1</sup> and plant density. Late-May planting was favorable for late maturing hybrid (P84G62) in all locations. However, the yield of early maturing hybrid (DKS 28-05) and medium maturing hybrid (DKS 37-07) was less affected by delayed planting. The effects of planting dates on yield and yield components of grain sorghum hybrids were found to be variable among hybrid maturity groups and locations.
基金supported by the National Natural Science Foundation of China(32001607)the Fundamental Research Funds for the Central Universities of Southwest University,China(SWU118087)。
文摘Sucrose nonfermenting-related protein kinase 1(SnRK1)is one of the critical serine/threonine protein kinases.It commonly mediates plant growth and development,cross-talks with metabolism processes and physiological responses to biotic or abiotic stresses.It plays a key role in distributing carbohydrates and sugar signal transporting.In the present study,eight SnRK1 coding genes were identified in sorghum(Sorghum bicolor L.)via sequences alignment,with three forαsubunits(SnRK1α1 to SnRK1α3),three forβ(SnRK1β1 to SnRK1β3),and one for bothγ(SnRK1γ)andβγ(SnRK1βγ).These eight corresponding genes located on five chromosomes(Chr)of Chr1–3,Chr7,and Chr9 and presented collinearities to SnRK1s from maize and rice,exhibiting highly conserved domains within the same subunits from the three kinds of cereals.Expression results via qRT-PCR showed that different coding genes of SnRK1s in sorghum possessed similar expression patterns except for SnRK1α3 with a low expression level in grains and SnRK1β2 with a relatively high expression level in inflorescences.Results of subcellular localization in sorghum leaf protoplast showed that SnRK1α1/α2/α3/γmainly located on organelles,while the rest four of SnRK1β1/β2/β3/βγlocated on both membranes and some organelles.Besides,three combinations were discovered among eight SnRK1 subunits in sorghum through yeast two hybrid,includingα1-β2-βγ,α2-β3-γ,andα3-β3-γ.These results provide informative references for the following functional dissection of SnRK1 subunits in sorghum.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(20120304201)~~
文摘According to many years of experimental summary, regulations on planting technique of harmless feeding Sorghum bicolor (L.) Moenchwere studied from the application scope, basic demands of planting, preparation be fore seeding, demands of seeding, field management, clipping and harvesting, transportation, storage, ledger management and other technical requirements, and specific measures and technical indicators of the technical regulations were analyzed, so as to provide normalized, standardized, industrial and marketization technical support for the planting of harmless feeding S. bicolor (L.) Moench.
基金supported by the National Natural Science Foundation of China(32001607)the Fundamental Research Funds for the Central Universities of Southwest University,China(SWU118087)。
文摘Sugar transporters are essential for osmotic process regulation,various signaling pathways and plant growth and development.Currently,few studies are available on the function of sugar transporters in sorghum(Sorghum bicolor L.).In this study,we performed a genome-wide survey of sugar transporters in sorghum.In total,98 sorghum sugar transporters(SSTs)were identified via BLASTP.These SSTs were classified into three families based on the phylogenetic and conserved domain analysis,including six sucrose transporters(SUTs),23 sugars will eventually be exported transporters(SWEETs),and 69 monosaccharide transporters(MSTs).The sorghum MSTs were further divided into seven subfamilies,including 24 STPs,23 PLTs,two VGTs,four INTs,three p Glc T/SBG1 s,five TMTs,and eight ERDs.Chromosomal localization of the SST genes showed that they were randomly distributed on 10 chromosomes,and substantial clustering was evident on the specific chromosomes.Twenty-seven SST genes from the families of SWEET,ERD,STP,and PLT were found to cluster in eight tandem repeat event regions.In total,22 SSTs comprising 11 paralogous pairs and accounting for 22.4%of all the genes were located on the duplicated blocks.The different subfamilies of SST proteins possessed the same conserved domain,but there were some differences in features of the motif and transmembrane helices(TMH).The publicly-accessible RNA-sequencing data and real-time PCR revealed that the SST genes exhibited distinctive tissue specific patterns.Functional studies showed that seven SSTs were mainly located on the cell membrane and membrane organelles,and 14 of the SSTs could transport different types of monosaccharides in yeast.These findings will help us to further elucidate their roles in the sorghum sugar transport and sugar signaling pathways.
文摘Sorghum metabolism continually adapts to environmental temperature as thermal patterns modulate diurnally and seasonally. The degree of adaptation to any given temperature may be difficult to determine from phenotypic responses of the plants. The present study was designed to see if the efficiency of quantum yield of photosystem II could be used as a measure of how well leaf tissue metabolism was able to withstand a prolonged respiratory demand caused by elevated temperatures. The efficiency of quantum yield values of Pioneer 84G62 and Northrup King KS585 commercial sorghum hybrids showed that when the hybrids were grown in a 28°C/20°C day/night cycle in the greenhouse or the field, Pioneer hybrid 84G62 withstood subsequent elevated thermal challenges better than Northrup King KS585. The same hybrids grown in a 39°C/32°C day/night cycle showed similar efficiency of quantum yield values when thermally challenged. Water-deficit stress increased the heat resistance of the tissue raising the efficiency of quantum yield of both lines to the same level. Upon recovery from the water deficit stress the differential efficiency of quantum yield values between the two lines re-appeared. The data provided in this study suggest a metabolic advantage of Pioneer 84G62 to environmental thermal challenges compared with the Northrup King KS585.
文摘The Primacy question addressed in our study is: Is the difterntial expression of rbcL gene in mesophyll cells and in bundle sheath cells related to the sequence of the gene per se?An enzymatic approach was fist established to separate the two groups of cells. Microscopic examination revealed satisfactory separation effect: minimal mutual contamination was found so that no mistake might be introduced into biochemical or molecular biological expeitments using such preparations. CpDNA were isolated from mesophyll cells and from bundle sheath cells and coding region of rbcL gene was obtained from each by PCR ampilfication.Cloning and sequencing were then done on them.Compartive analysis , however, revealed identical sequence, with a length of 1,368 bp, encoding 456 amino acids. Since sequences of the non-coding regions of rbcL gene in masephyll sad bundle sheath have not been obtained, it can not yet be concluded that the differential expression is not related to the sequence itself. Nevertheless,It sesems justifiable to infer that whatever difference there may be between the sequences of rbcL gene in two groups of cells can only be found in the non-coding regions(including promoter and the 3' down stream region).
基金support of Innovation Program of Chinese Academy of Agricultural Sciencesthe Major Projects of Genetically Modified Organisms, China (2016ZX08003004)
文摘Drought stress affects the growth and productivity of crop plants including sorghum.To study the molecular basis of drought tolerance in sorghum,we conducted the transcriptomic profiling of sorghum leaves and roots under drought stress using RNA-Seq method.A total of 510,559,and 3 687 differentially expressed genes(DEGs)in leaves,3 368,5 093,and 4 635 DEGs in roots responding to mild drought,severe drought,and re-watering treatments were identified,respectively.Among them,190 common DEGs in leaves and 1 644 common DEGs in roots were responsive to mild drought,severe drought,and re-watering environment.Gene Ontology(GO)enrichment analysis revealed that the GO categories related to drought tolerance include terms related to response to stimulus especially response to water deprivation,abscisic acid stimulus,and reactive oxygen species.The major transcription factor genes responsive to drought stress include heat stress transcription factor(HSF),ethylene-responsive transcription factor(ERF),Petunia NAM,Arabidopsis ATAF1/2 and CUC2(NAC),WRKY transcription factor(WRKY),homeodomain leucine zipper transcription factor(HD-ZIP),basic helix-loop-helix transcription factor(bHLH),and V-myb myeloblastosis viral oncogene homolog transcription facotr(MYB).Functional protein genes for heat shock protein(HSPs),late-embryogenesis-abundant protein(LEAs),chaperones,aquaporins,and expansins might play important roles in sorghum drought tolerance.Moreover,the genomic regions enriched with HSP,expansin,and aquaporin genes responsive to drought stress could be used as powerful targets for improvement of drought tolerance in sorghum and other cereals.Overall,our results provide a genome-wide analysis of DEGs in sorghum leaves and roots under mild drought,severe drought,and re-watering environments.This study contributes to a better understanding of the molecular basis of drought tolerance of sorghum and can be useful for crop improvement.
文摘Apomictic seed development is a complex process including formation of unreduced embryo sac,parthenogenetic embryo development from the egg cell,and endosperm formation either autonomously,or due to fertilization of polar nuclei by the sperm(under pseudogamous form of apomixis).In the latter case,an obstacle to the normal endosperm development is disturbance of maternal(m)-to-paternal(p)genomic ratio 2m:1p that occurs in the cases of pollination of unreduced embryo sac with haploid sperms.Usage of tetraploid pollinators can overcome this problem because in such crosses maternal-to-paternal genomic ratio is 4m:2p that provides formation of kernels with plump endosperm.Using tetraploid lines as pollen parents we observed formation of plump kernels on the ears and panicles of diploid maize and sorghum accessions.These kernels had hybrid endosperm and diploid maternal-type embryo or hybrid embryo with different ploidy level(2n,3n,4n).The frequencies of plump kernels on the ear ranged from 0.2-0.3%to 5.7-6.2%counting from the number of ovaries.Maternal-type plants were found in two maize lines,their frequency varying from 10.7 to 37.5%of the progeny plants.In CMS-lines of sorghum pollinated with tetraploid sorghum accessions,the frequency of plump kernels ranged from 0.6 to 14.0%counting from the number of ovaries;the frequency of maternal-type plants varied from 33.0 up to 96.1%.The hybrid nature of endosperm of the kernels that gave rise to maternal-type plants has been proved by marker gene expression and by SDS-electrophoresis of endosperm proteins.These data testify to variable modes of seed formation under diploid×tetraploid crosses in maize and sorghum both by amphi-and by apomixis.Therefore,usage of tetraploid pollinators might be a promising approach for isolation of apomixis in maize and sorghum accessions.
基金partially supported by the Russian Foundation for Basic Research (Nos. 13-04-01404, 16-04-01131)
文摘Use of cytoplasmic male sterility (CMS) in hybrid breeding requires effective male fertility-restoring lines. In sorghum, very few restoring lines that can restore fertility in A_3 CMS have been reported. To identify the reasons for this deficiency, F_1 and F_2 hybrids of an A_3 CMS line crossed with the line IS1112C, a donor of fertility-restoring (Rf) genes for A_3 cytoplasm, and testcrosses of fertile plants to A_3CMS lines were grown under contrasting water availability regimes in dryland and irrigated field plots. In the irrigated plots the frequency of fertile plants in testcrosses was twice that in dryland plots (P < 0.05). Fertile plants from the F_2 family grown in the irrigated plots showed significantly higher restoration ability than fertile plants from the same family grown in dryland plots. F_3 plants from the F_2 family grown in irrigated plots yielded on average a sixfold higherfrequency of fertile plants in testcrosses than F_3 plants derived from dryland plots (P < 0.01).Fertility of testcross hybrids correlated negatively with air vapor pressure deficit (VPD) at flowering (r = - 0.96; P < 0.01) suggesting that VPD is a trigger for downregulation of Rf genes for A_3 cytoplasm.
文摘The presence of facultative apomixis In line 296B was proved by the embryologicalstudy.The twin embryosacs were observed at florescence.The autonomous development of em-bryo was confirmed by multiple cell proembryo existing with undeveloped polar nuclei In one embryosac.Cell structure and size of apomictic proembryo were different from sexual proembryo.The structural feature of proembryo can be used to distinguish apomictic proembryo with devel-oped endosperm from sexual embryo.The apomictic development in this line is attributed toaposporous type.The frequency of apomixis Is at least 16—21%.The apomictic characters andthe potential for fixing heterosis in line 296B was dlscussed in the present paper.
文摘Investigation of male sterility mutations is an effective approach for identification of genes involved in anther and pollen development. The comparison of “cytological phenotypes” of newly induced mutants with phenotypes determined by already known genes favors elucidation of genetic control of diverse microsporo- and gametogenesis stages. In this paper, we describe pollen development in the grain sorghum line Zh10-asc1 with mutation of male sterility. This line was obtained from callus culture treated by sodium ascorbate. A wide spectrum of abnormalities in microsporogenesis have been found, such as cytomixis, chromosomal laggards, chromosome disjunction, adhesion of chromosomes, disturbed cytokinesis, and others. In tapetum, the cells with one nucleus, with unequal nuclei, and with micronuclei have been observed. During pollen grain (PG) maturation abnormalities in starch accumulation and delay of development often took place. In mature anthers, a variety of pollen grain types have been revealed: fertile, of irregular shape, incompletely filled with starch, PGs delayed at the uni-nucleate or bi-nucleate gametophyte stages, with partially or fully degenerated contents, and with abnormal coloration. Variation in spectrum and the frequency of disturbances between the flowers of one and the same plant have been revealed. The reasons for significant genetic and epigenetic instability are discussed.
基金supported by the Natural Science Foundation of Heilongjiang Province(ZD2020C007,QC2017024)Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong(ZDZX202101)Special Funds from the Central Finance to Support the Development of Local Universities(TO SXL)。
文摘Salt stress limits plant growth and development.In this study,changes in membrane lipids were investigated in leaves of sorghum seedlings subjected to salt stress(150 mmol L^(-1)NaCl).Galactolipids(DGDG and MGDG)accounted for more than 65%of the total glycerolipids in sorghum leaves.The predominance of C36 molecular species in MGDG suggested that sorghum is an 18:3 plant.Under Na Cl treatment,the content of major phospholipids(PC and PE)increased,accompanied by the activation of their metabolism pathways at the transcriptional level.In contrast,the proportion of MGDG and PG dropped drastically,leading to a decreased ratio of plastidic to non-plastidic lipids.An adjustment of glycerolipid pathway between the cytosolic and plastidic compartments was triggered by salt stress,as reflected by the increased conversion of PC to PA,providing precursors for galactolipid synthesis.The elevated DGDG resulted in increased DGDG/MGDG and bilayer/non-bilayer lipid ratios.The double-bond index of PC,PE,and DGDG increased markedly,evidently owing to the increased expression of FAD3 and FAD8.These findings will be helpful for understanding dynamic membrane lipid changes and adaptive lipid remodeling in sorghum response to salt stress.
文摘Sorghum has become ever more prominent on the global energy scene, with studies in the area becoming extremely important. Agricultural production in the semi-arid region of the Brazilian Northeast is intrinsically dependent on rainfall in the region. However, on both inter- and intra-annual scales, the rainfall regime is quite irregular. The aim of this study was to evaluate the productivity of sorghum grown under a rainfed regime, and the water-use efficiency of crops in the semi-arid region of the northeast of Brazil. The work was carried out in the city of Tabuleiro do Norte in the semi-arid region of the State of Ceará. Mean productivity of the sorghum was 919.42 kg·ha-1, with maximum values being recorded for lot 02 (1032 kg·ha-1), lot 03 (1102 kg·ha-1), lot 04 (2143 kg·ha-1) and lot 12 (1367 kg·ha-1). The greatest value for water-use efficiency, 1.13 m3·kg-1, was found for lot 04, while the smallest value, 4.83 m3·kg-1 was seen in lot 02. It was found that the low productivity of sorghum in a rainfed regime shows that the lack of success in production systems in semi-arid regions is not due to the total amount of rainfall, but rather the spatial and temporal distribution of the rains, as well as the occurrence of hot, dry spells. Furthermore, it can be seen that the best ratio of grain production to water demand shows a strong correlation with the distribution of water throughout the cycle, and not only with the total volume.
文摘Sorghum (<i>Sorghum</i><span> <i>bicolor</i></span> (L.) Moench) is one of the world’s leading cereal crops in agricultural production, which has a special importance in the arid regions. However, unlike other cereals, sorghum grain has a lower nutritional value, which is caused, inter alia, by the resistance of its seed storage proteins (kafirins) to protease digestion. One of the effective approaches to improve the nutritional value of sorghum grain is to obtain mutants with partially or completely suppressed synthesis or altered amino acid composition of kafirins. The employment of genome editing may allow to solve this problem by introducing mutations into the nucleotide sequences of the <i>α</i>- and <i>γ</i>-kafirin genes. In this study, genomic target motifs (23 bp sequences) were selected for the introduction of mutations into the <i>α-</i> and <i>γ-KAFIRIN</i> genes of sorg<span>hum. The design of the gRNAs was conducted using the online tools</span> CRISPROR and CHOPCHOP. <a name="_Hlk55317737"></a>Two most suitable targets were chosen for <i>α-KAFIRIN</i> (<i>k</i><span>1<i>C</i>5</span>) and two for <i>γ-KAFIRIN</i> (<i>gKAF</i><span>1</span>) genes. The insertion of respective sequences in the generic vector pSH121 was performed at the <i>BsaI</i> (<i>Eco</i><span>31<i>I</i></span>) sites. Validation of the cloning procedure was performed by DNA sequencing. Subcloning of the resulting constructs was performed using the <i>SfiI</i> restriction sites into the compatible binary vector B479p7oUZm-LH. The correct assembly of binary vectors was confirmed by restriction analysis using the <i>MluI</i> and <i>SfiI</i> cleavage sites. The four vectors created (1C</span><span style="font-family:""> </span><span style="font-family:"">-</span><span style="font-family:""> </span><span style="font-family:"">4C) were transferred by electroporation into the <i>Agrobacterium</i><span> <i>tumefaciens</i></span> strain AGL0. Currently, this vector series is used for stable transformation of sorghum using immature embryo explants.