Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) were employed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambient temperature on adsorption was studied u...Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) were employed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich抯 model reasonably. Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process. It is proved that the squared driving force mass transfer model can be adopted to elucidate the process. The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.展开更多
The treatment of the industrial wastewater, in which the concentration of triethylamine (TEN) and CODcr was around 3450 mg/L and 22400 mg/L respectively, was studied by adsorption of macroporous resins. Results demons...The treatment of the industrial wastewater, in which the concentration of triethylamine (TEN) and CODcr was around 3450 mg/L and 22400 mg/L respectively, was studied by adsorption of macroporous resins. Results demonstrate that the polymeric adsorbent CHA-111 has excellent effect on the adsorption and desorption of TEN. The concentration of TEN in the effluent is less than 30mg/L, and the removal efficiency of TEN and total CODcr exceed 99% and 95% respectively. The accumulation and resource reuse of TEN can be realized in this process.展开更多
In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of ...In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of neutralization. As asecondary treatment method, adsorption with CHA-lll showed better efficency thanPhotocatalytic decomposition and solvent extraction. The optimal technologicalparameters were: adsorption: current velocity: 2.0 BV/hr(bed volume per hour), roomtemperature, desorption: current velocity:10 BV/hr 80℃8% sodium hydroxideaqueous solutions. In conclusion, 90.9% COD in the neutralizing wastewater and98. 4% COD in the hydrolysis wastewater are removed successfully.展开更多
The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (P...The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (PhCHO) aswell as the decrease in Total Organic Carbon (TOC)from 4691mg/l to <300mg/L. 3. 7kgPhCH2COOH and 120kg NaCl will be recovered from per m3 wastewater and theadsorbent can be reused after being regenerated by NaOH aqueous solution andmethanol. Good economic, social and environmental results can be achieved with thismethod.展开更多
The wastewater from naphthol As-E production process was treated with macroporous polymeric adsorbent NDA-222. Naphthol As-E and 2,3-acid in the wastewater could be removed completely and the Total Organic Carbon (TOC...The wastewater from naphthol As-E production process was treated with macroporous polymeric adsorbent NDA-222. Naphthol As-E and 2,3-acid in the wastewater could be removed completely and the Total Organic Carbon (TOC) of the wastewater was decreased more than 98% from 1655mg/L to less than 30mg/L. The adsorbates could be desorbed completely with NaOH aqueous solution.展开更多
Wastewater from production process of 2,3-acid was treated by adsorption usingmacroporous resin NDA-708. After only one-step treatment by resin adsorption, removalefficiency of three kinds of naphthalene chemicals was...Wastewater from production process of 2,3-acid was treated by adsorption usingmacroporous resin NDA-708. After only one-step treatment by resin adsorption, removalefficiency of three kinds of naphthalene chemicals was above 99%, removal efficiency ofCODcr was above 96% Under proper operating condition, desorption efficiency wasaround 100%. The running records of the industrial facility showed that the naphthlenechemicals in desorption effluent could be reused without obvious influence on the qualityOf the product.展开更多
文摘Several macroporous polymeric adsorbents (NDA-999, XAD-8, X-5 and XAD-2) were employed in the study to adsorb phenylacetic acid from aqueous solution. Effect of salt and ambient temperature on adsorption was studied using NDA-999 adsorbent and the adsorption process conforms to Freundlich抯 model reasonably. Adsorption dynamics were conducted in batch experiments in order to make clear the mechanism of adsorption process. It is proved that the squared driving force mass transfer model can be adopted to elucidate the process. The treatment process of industrial wastewater containing high strength of phenylacetic acid was proposed for cleaner production of phenylacetic acid.
文摘The treatment of the industrial wastewater, in which the concentration of triethylamine (TEN) and CODcr was around 3450 mg/L and 22400 mg/L respectively, was studied by adsorption of macroporous resins. Results demonstrate that the polymeric adsorbent CHA-111 has excellent effect on the adsorption and desorption of TEN. The concentration of TEN in the effluent is less than 30mg/L, and the removal efficiency of TEN and total CODcr exceed 99% and 95% respectively. The accumulation and resource reuse of TEN can be realized in this process.
文摘In this paper the two effluents from PBA (3- phenoxy -benzaldehyde) productionprocess were treated by polymeric adsorbent CHA-lll. PBA or PBC(3-phenoxybenzoic acid) was recovered from the wastewater in the process of neutralization. As asecondary treatment method, adsorption with CHA-lll showed better efficency thanPhotocatalytic decomposition and solvent extraction. The optimal technologicalparameters were: adsorption: current velocity: 2.0 BV/hr(bed volume per hour), roomtemperature, desorption: current velocity:10 BV/hr 80℃8% sodium hydroxideaqueous solutions. In conclusion, 90.9% COD in the neutralizing wastewater and98. 4% COD in the hydrolysis wastewater are removed successfully.
文摘The effluent from phenyl acetic acid (PhCH2COOH) production process can betreated with NDA-999 macroporous polymeric adsorbent with about 100% removalefficiency of PhCH2COOK benzyl alcohol (PhCH2OH)and benzaldehyde (PhCHO) aswell as the decrease in Total Organic Carbon (TOC)from 4691mg/l to <300mg/L. 3. 7kgPhCH2COOH and 120kg NaCl will be recovered from per m3 wastewater and theadsorbent can be reused after being regenerated by NaOH aqueous solution andmethanol. Good economic, social and environmental results can be achieved with thismethod.
文摘The wastewater from naphthol As-E production process was treated with macroporous polymeric adsorbent NDA-222. Naphthol As-E and 2,3-acid in the wastewater could be removed completely and the Total Organic Carbon (TOC) of the wastewater was decreased more than 98% from 1655mg/L to less than 30mg/L. The adsorbates could be desorbed completely with NaOH aqueous solution.
文摘Wastewater from production process of 2,3-acid was treated by adsorption usingmacroporous resin NDA-708. After only one-step treatment by resin adsorption, removalefficiency of three kinds of naphthalene chemicals was above 99%, removal efficiency ofCODcr was above 96% Under proper operating condition, desorption efficiency wasaround 100%. The running records of the industrial facility showed that the naphthlenechemicals in desorption effluent could be reused without obvious influence on the qualityOf the product.