The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting sy...The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.展开更多
On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sortin...On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.展开更多
The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylo...The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.展开更多
Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexi...Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.展开更多
X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hi...X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ...This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.展开更多
Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past...Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.展开更多
The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is...The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is challenging to manually sort with high efficiency.Here,we reported a high-throughput sorting system for two-color fluorescent zebraflsh embryos.The embryos can be automatically loaded from a sample pool and sorted based on the average fluorescent intensity.The two-color fluorescent signals were split into two lines and detected by an area array camera.The system achieves the sorting of 100 embryos in less than 10 min with an accuracy of greater than 95%.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting ...By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52075036)Key Technologies Research and Development Program of China(Grant No.2022YFC3302204).
文摘The Chinese express delivery industry processes nearly 110 billion items in 2022,averaging an annual growth rate of 200%.Among the various types of sorting systems used for handling express items,cross-belt sorting systems stand out as the most crucial.However,despite their high degree of automation,the workload for operators has intensified owing to the surging volume of express items.In the era of Industry 5.0,it is imperative to adopt new technologies that not only enhance worker welfare but also improve the efficiency of cross-belt systems.Striking a balance between efficiency in handling express items and operator well-being is challenging.Digital twin technology offers a promising solution in this respect.A realization method of a human-machine integrated digital twin is proposed in this study,enabling the interaction of biological human bodies,virtual human bodies,virtual equipment,and logistics equipment in a closed loop,thus setting an operating framework.Key technologies in the proposed framework include a collection of heterogeneous data from multiple sources,construction of the relationship between operator fatigue and operation efficiency based on physiological measurements,virtual model construction,and an online optimization module based on real-time simulation.The feasibility of the proposed method was verified in an express distribution center.
基金The authors acknowledge the financial support from the NationalNatural Science Foundation ofChina(No.52275562)the Technology Innovation Fund of Huazhong University of Science and Technology(No.2022JYCXJJ015).
文摘On-demand droplet sorting is extensively applied for the efficient manipulation and genome-wide analysis of individual cells.However,state-of-the-art microfluidic chips for droplet sorting still suffer from low sorting speeds,sample loss,and labor-intensive preparation procedures.Here,we demonstrate the development of a novel microfluidic chip that integrates droplet generation,on-demand electrostatic droplet charging,and high-throughput sorting.The charging electrode is a copper wire buried above the nozzle of the microchannel,and the deflecting electrode is the phosphate buffered saline in the microchannel,which greatly simplifies the structure and fabrication process of the chip.Moreover,this chip is capable of high-frequency droplet generation and sorting,with a frequency of 11.757 kHz in the drop state.The chip completes the selective charging process via electrostatic induction during droplet generation.On-demand charged microdroplets can arbitrarilymove to specific exit channels in a three-dimensional(3D)-deflected electric field,which can be controlled according to user requirements,and the flux of droplet deflection is thereby significantly enhanced.Furthermore,a lossless modification strategy is presented to improve the accuracy of droplet deflection or harvest rate from 97.49% to 99.38% by monitoring the frequency of droplet generation in real time and feeding it back to the charging signal.This chip has great potential for quantitative processing and analysis of single cells for elucidating cell-to-cell variations.
基金supported by the Key Science & Technology Project of Gansu Province (22ZD6NA007)the National Key Research and Development Program of China (2021YFD2200202)Computing support was provided by the Supercomputing Center of Lanzhou University
文摘The transition of traits between genetically related lineages is a fascinating topic that provides clues to understanding the drivers of speciation and diversification.Much can be learned about this process from phylogeny-based trait evolution.However,such inference is often plagued by genome-wide gene-tree discordance(GTD),mostly due to incomplete lineage sorting(ILS)and/or introgressive hybridization,especially when the genes underlying the traits appear discordant.Here,by collecting transcriptomes,whole chloroplast genomes(cpDNA),and population genetic datasets,we used the coalescent model to turn GTD into a source of information for ILS and employed hemiplasy to explain specific cases of apparent“phylogenetic discordance”between different morphological traits and probable species phylogeny in the Allium subg.Cyathophora.Both concatenation and coalescence methods consistently showed the same phylogenetic topology for species tree inference based on single-copy genes(SCGs),as supported by the KS distribution.However,GTD was high across the genomes of subg.Cyathophora:~27%e38.9%of the SCG trees were in conflict with the species tree.Plasmid and nuclear incongruence was also present.Our coalescent simulations indicated that such GTD was mainly a product of ILS.Our hemiplasy risk factor calculations supported that random fixation of ancient polymorphisms in different populations during successive speciation events along the subg.Cyathophora phylogeny may have caused the character transition,as well as the anomalous cpDNA tree.Our study exemplifies how phylogenetic noise can be transformed into evolutionary information for understanding character state transitions along species phylogenies.
基金supported by the National Natural Science Foundation of China (grant no.32001085,31971392,31960319)。
文摘Genome-scale data,while promising for illuminating phylogenetic relationships,frequently pose a conundrum by yielding conflicting topologies and highly variable gene tree distributions(Pease et al.,2016).This complexity likely arises from the reticulate evolution observed in many taxa,where genetic information exchange occurs through diverse biological processes.
基金supported by State Key Laboratory of Mineral Processing (No.BGRIMM-KJSKL-2022-16)China Postdoctoral Science Foundation (No.2021M700387)+1 种基金National Natural Science Foundation of China (No.G2021105015L)Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2904502)。
文摘X-ray fluorescence(XRF)sensor-based ore sorting enables efficient beneficiation of heterogeneous ores,while intraparticle heterogeneity can cause significant grade detection errors,leading to misclassifications and hindering widespread technology adoption.Accurate classification models are crucial to determine if actual grade exceeds the sorting threshold using localized XRF signals.Previous studies mainly used linear regression(LR)algorithms including simple linear regression(SLR),multivariable linear regression(MLR),and multivariable linear regression with interaction(MLRI)but often fell short attaining satisfactory results.This study employed the particle swarm optimization support vector machine(PSO-SVM)algorithm for sorting porphyritic copper ore pebble.Lab-scale results showed PSO-SVM out-performed LR and raw data(RD)models and the significant interaction effects among input features was observed.Despite poor input data quality,PSO-SVM demonstrated exceptional capabilities.Lab-scale sorting achieved 93.0%accuracy,0.24%grade increase,84.94%recovery rate,57.02%discard rate,and a remarkable 39.62 yuan/t net smelter return(NSR)increase compared to no sorting.These improvements were achieved by the PSO-SVM model with optimized input combinations and highest data quality(T=10,T is XRF testing times).The unsuitability of LR methods for XRF sensor-based sorting of investigated sample is illustrated.Input element selection and mineral association analysis elucidate element importance and influence mechanisms.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.
文摘Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade waste rocks to reduce operation costs.Many ore-sorting algorithms using color images have been proposed in the past,but only some validate their results using mineral grades or optimize the algorithms to classify rocks in real-time.This paper presents an ore-sorting algorithm based on image processing and machine learning that is able to classify rocks from a gold and silver mine based on their grade.The algorithm is composed of four main stages:(1)image segmentation and partition,(2)color and texture feature extraction,(3)sub-image classification using neural networks,and(4)a voting system to determine the overall class of the rock.The algorithm was trained using images of rocks that a geologist manually classified according to their mineral content and then was validated using a different set of rocks analyzed in a laboratory to determine their gold and silver grades.The proposed method achieved a Matthews correlation coefficient of 0.961 points,higher than other classification algorithms based on support vector machines and convolutional neural networks,and a processing time under 44 ms,promising for real-time ore sorting applications.
基金the National Natural Science Foundation of China(No.62205368)the Suzhou Basic Research Pilot Project(SJC2021013)the Key Research and Development Program of Jiangsu Province(BE2020664).
文摘The zebrafish embryos were widely employed in genetics,development and drug discovery studies as miniatured animal models.Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is challenging to manually sort with high efficiency.Here,we reported a high-throughput sorting system for two-color fluorescent zebraflsh embryos.The embryos can be automatically loaded from a sample pool and sorted based on the average fluorescent intensity.The two-color fluorescent signals were split into two lines and detected by an area array camera.The system achieves the sorting of 100 embryos in less than 10 min with an accuracy of greater than 95%.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.
文摘By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data.