This work aimed to find the best possible solution for transparent facades. The evaluation was formulated to assure the highest user comfort criteria corresponding to energy efficiency--two criterion optimisation. The...This work aimed to find the best possible solution for transparent facades. The evaluation was formulated to assure the highest user comfort criteria corresponding to energy efficiency--two criterion optimisation. The analyses were based on BESTEST, south-oriented zone geometry. Computer model was designed using Finite Control Volume Techniques with assumptions for applied materials and specified boundary conditions, plus reference year for energy calculation (WYECZJ. The natural ventilation facade system was desfgned to determine airflow network inside the facade. The adjustable size of openings (inlets and outlets) was selected at the level of 80% for the cold season and totally dosed during the hot season. Environmental parameters for thermal comfort evaluation were: zone resultant temperature and solar radiation in zone space. Energy efficiency was assessed based on heat flux between the zone with controlled temperature and external environment. Results showed that well selected design of buffer zone section could improve energy efficiency of adjacent zones for both winter and summer periods. The most profitable Double Skin Facade solution is DGC (double glazing with low-e coating) combined with single glazing with internal blinds (SGB) or coloured glazing.展开更多
文摘This work aimed to find the best possible solution for transparent facades. The evaluation was formulated to assure the highest user comfort criteria corresponding to energy efficiency--two criterion optimisation. The analyses were based on BESTEST, south-oriented zone geometry. Computer model was designed using Finite Control Volume Techniques with assumptions for applied materials and specified boundary conditions, plus reference year for energy calculation (WYECZJ. The natural ventilation facade system was desfgned to determine airflow network inside the facade. The adjustable size of openings (inlets and outlets) was selected at the level of 80% for the cold season and totally dosed during the hot season. Environmental parameters for thermal comfort evaluation were: zone resultant temperature and solar radiation in zone space. Energy efficiency was assessed based on heat flux between the zone with controlled temperature and external environment. Results showed that well selected design of buffer zone section could improve energy efficiency of adjacent zones for both winter and summer periods. The most profitable Double Skin Facade solution is DGC (double glazing with low-e coating) combined with single glazing with internal blinds (SGB) or coloured glazing.