As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba...As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.展开更多
The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), ...The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), which occurs for the power seat mechanism during sliding operation, was also evaluated. In addition, the results were expressed in terms of sound quality metrics, which measure the RPM change and sound level versus voltage to analyze their statistical correlation. Furthermore, vibration measurement and analysis were conducted simultaneously to determine the noisiest conditions and the source of the noise. The changes in RPM and voltage of a motor, in addition to vibration and noise, were measured at the same time to determine how noise, RPM, and voltage are interrelated.展开更多
A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60...A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60, 70 and 80 km/h respectively, the annoyance of the vehicle noises was evaluated in the testing room using paired comparison method, and the sound quality metrics and subjective annoyance were then distilled. Loudness, sharpness, roughness, periodicity and impulsiveness were selected for each of the vehicle noises. By correlation analysis method, it can be found that loudness has a higher correlation (0.91) with annoyance than other parameters. Meanwhile, sharpness, periodicity, roughness and impulsiveness have correlation with subjective perception with correlation coefficients being 0.84, -0.82, 0.62 and 0.87, respectively. The result of multiple regression analysis shows that calculated annoyance obtained by the regression equation can explain the perceptual annoyance and the regressed evaluation model is feasible to evaluate the sound quality of vehicle.展开更多
Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on ...Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on sound wave trans-mission.This method employs the artificial head technique, in which the head related transfer function was taken into account tothe outer ear simulation phase.First, a bionic artificial head was designed as the outer ear model with considering the outersound field in view of theory and physical explanations.Then the auditory peripheral simulation model was built, which mimicsthe physiological functions of the human hearing, simulating the acoustic signal transfer process and conversion mechanismsfrom the free field to the peripheral auditory system.Finally, performance comparison was made between the proposed SQOEmethod and ArtemiS software, and the verifications of subjective and objective related analysis were made.Results show thatthe proposed method was economical, simple, and with good evaluation quality.展开更多
With the widespread application of electrification and intelligence of automobiles,the number of electric devices with small DC motors in automobiles has gradually increased,and the in-terior of electric vehicles is q...With the widespread application of electrification and intelligence of automobiles,the number of electric devices with small DC motors in automobiles has gradually increased,and the in-terior of electric vehicles is quieter.The sound quality(SQ)of small motor directly affects the pas-senger experience.Therefore,the research on the SQ of small motor is of great significance.In this paper,the objective quantification of small motor sound quality was investigated based on tradi-tional psychoacoustic metrics.The time-frequency characteristics of sound signal was analyzed to quantify the subjective perception caused by the sound of small motor.And a new psychoacoustic metrics of objective evaluation which were suitable for small motor SQ evaluation were proposed,namely specific loudness energy(SLE),specific prominence ratio index(SPRI),relative pitch exceedance(RPE)and tremolo index(TI).Then,two objective evaluation models of small motor SQ were established to characterize the multi-dimensional subjective perception attributes by using multiple linear regression(MLR)and support vector regression(SVR)respectively,which can be used for the prediction and evaluation of the small motor SQ.The results show that the prediction accuracy of the model established by SVR method was higher than that of MLR,and SVR has stronger robustness.The objective evaluation model of small motors SQ established in this study is of great importance for improving the sound quality of small motors.展开更多
A novel sound quality simulation approach was proposed to optimize the acoustic performance of a four-cylinder diesel engine.Finite element analysis,single-input and multiple-output technology,flexible multi-body dyna...A novel sound quality simulation approach was proposed to optimize the acoustic performance of a four-cylinder diesel engine.Finite element analysis,single-input and multiple-output technology,flexible multi-body dynamics,and boundary element codes were used to acquire the hexahedron-element model,experimental modal frequencies,vibration velocities,and structurally radiated noise of the block,respectively.The simulated modal frequencies and vibration velocities agreed well with the experimental data,which validated the finite-element block.The acoustic response showed that considerable acoustic power levels existed in 1500-1900 Hz and 2300-2800 Hz as the main frequency ranges to optimize the block acoustics.Then,the optimal block is determined in accordance with the novel approach,which reduces the overall value,high-frequency amplitudes,and peak values of acoustic power;thus,the loudness,sharpness,and roughness decline to make the sound quieter,lower-pitched,and smoother,respectively.Finally,the optimal block was cast and bench-tested.The results reveal that the sound quality of the optimal-block engine is substantially improved as numerically expected,which verifies the effectiveness of the research approach.展开更多
There are more researches on engine fan noise control focusing on reducing fan noise level through optimizing fan structure,and a lot of research achievements have been obtained.However,researches on the effect of fan...There are more researches on engine fan noise control focusing on reducing fan noise level through optimizing fan structure,and a lot of research achievements have been obtained.However,researches on the effect of fan noise to engine noise quality are lacking.The influences of the effects of fan structure optimization on the engine noise quality are unclear.Thus,there will be a decline in fan noise level,but the deterioration of engine noise quality.Aiming at the above problems,in consideration of fan structure design and engine noise quality,an innovative method to analyze the contribution of fan noise to engine noise quality using psychoacoustic theory is proposed.The noises of diesel engine installing different cooling fans are measured by using the acoustic pressure method.The experiment results are regarded as analysis samples.The model of sensory pleasantness is used to analyze the sound quality of a diesel engine with different cooling fans.Results show that after installing 10-blade fan in medium diameter the sensory pleasantness at each test point is increased,and the increase is 13.53% on average,which indicate the improvement of the engine noise quality.In order to verify the psychoacoustical analysis,the subjective assessment is carried out.The test result shows the noise quality of engine installed10-blade fan in medium diameter is most superior.1/3 octave frequency spectrum analysis is used to study the reason of the improvement of engine noise quality.It is found that after installing proper cooling fan the sound pressure level below 400 Hz are obviously increased,the frequency assignment and spectral envelope are more reasonable and a proper cooling fan can optimize the spectrum structure of the engine noise.The psychoacoustic study is applied in the contribution of fan noise to engine noise,and the idea of engine sound quality improvement through the structure optimization is proposed.展开更多
This paper studies the acoustics of a frost free three door domestic refrigerator.Then,as a case study,the radiated noise reduction in the refrigerator using a natural material base composite is presented.Composites m...This paper studies the acoustics of a frost free three door domestic refrigerator.Then,as a case study,the radiated noise reduction in the refrigerator using a natural material base composite is presented.Composites manufactured out of Jute,which is a plant fiber abundantly and cheaply available in India and Bangladesh are used in the noise reduction in the refrigerator.Mostly in this work,composites made out of felts of jute were used as barriers for noise control of the refrigerator.Measured acoustical,thermal and physical properties of various jute composites are reported.Noise sources in the refrigerator were characterized using sound intensity method and sound pressure level measurements.It is found that the compressor and the evaporator fan are the predominant noise sources.The jute composite treatment done to the refrigerator shell around the evaporator fan reduced the refrigerator noise level by 5 dB and improved its measured sound quality metrics without affecting the cooling performance of the refrigerator.展开更多
Animal models are crucial for the study of severe infectious diseases,which is essential for determining their pathogenesis and the development of vaccines and drugs.Animal experiments involving risk grade 3 agents su...Animal models are crucial for the study of severe infectious diseases,which is essential for determining their pathogenesis and the development of vaccines and drugs.Animal experiments involving risk grade 3 agents such as SARS CoV,HIV,M.tb,H7N9,and Brucella must be conducted in an Animal Biosafety Level 3(ABSL-3)facility.Because of the in vivo work,the biosafety risk in ABSL-3 facilities is higher than that in BSL-3 facilities.Undoubtedly,management practices must be strengthened to ensure biosafety in the ABSL-3 facility.Meanwhile,we cannot ignore the reliable scientific results obtained from animal experiments conducted in ABSL-3 laboratories.It is of great practical significance to study the overall biosafety concepts that can increase the scientific data quality.Based on the management of animal experiments in the ABSL-3 Laboratory of Wuhan University,combined with relevant international and domestic literature,we indicate the main safety issues and factors affecting animal experiment results at ABSL-3 facilities.Based on these issues,management practices regarding animal experiments in ABSL-3 facilities are proposed,which take into account both biosafety and scientifically sound data.展开更多
基金supported by China Postdoctoral Science Foundation(2019M651240)National Natural Science Foundation of China(31670559).
文摘As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards.
基金supported by the research grant of AMPRIC & RIGCT in Kongju National University, Korea
文摘The changes in vibration, sound, and sound quality with changes in the driving voltage of a power seat motor from 12.5 to 14.5 V were measured and analyzed, which was used in real vehicles. BSR(buzz, squeak, rattle), which occurs for the power seat mechanism during sliding operation, was also evaluated. In addition, the results were expressed in terms of sound quality metrics, which measure the RPM change and sound level versus voltage to analyze their statistical correlation. Furthermore, vibration measurement and analysis were conducted simultaneously to determine the noisiest conditions and the source of the noise. The changes in RPM and voltage of a motor, in addition to vibration and noise, were measured at the same time to determine how noise, RPM, and voltage are interrelated.
基金Supported by Province and University Cooperation Fund of Yunnan Province (No. 2003HBBAA02A049).
文摘A statistical approach to evaluate the subjective perception of the annoyance caused by the vehicle noise was presented in this paper. After recording the noises of Sanfeng, Huali and Xiali at speeds of 30, 40, 50, 60, 70 and 80 km/h respectively, the annoyance of the vehicle noises was evaluated in the testing room using paired comparison method, and the sound quality metrics and subjective annoyance were then distilled. Loudness, sharpness, roughness, periodicity and impulsiveness were selected for each of the vehicle noises. By correlation analysis method, it can be found that loudness has a higher correlation (0.91) with annoyance than other parameters. Meanwhile, sharpness, periodicity, roughness and impulsiveness have correlation with subjective perception with correlation coefficients being 0.84, -0.82, 0.62 and 0.87, respectively. The result of multiple regression analysis shows that calculated annoyance obtained by the regression equation can explain the perceptual annoyance and the regressed evaluation model is feasible to evaluate the sound quality of vehicle.
文摘Based on auditory peripheral simulation model, a new Sound Quality Objective Evaluation (SQOE) method is presented,which can be used to model and analyze the impacts of head, shoulder and other parts of human body on sound wave trans-mission.This method employs the artificial head technique, in which the head related transfer function was taken into account tothe outer ear simulation phase.First, a bionic artificial head was designed as the outer ear model with considering the outersound field in view of theory and physical explanations.Then the auditory peripheral simulation model was built, which mimicsthe physiological functions of the human hearing, simulating the acoustic signal transfer process and conversion mechanismsfrom the free field to the peripheral auditory system.Finally, performance comparison was made between the proposed SQOEmethod and ArtemiS software, and the verifications of subjective and objective related analysis were made.Results show thatthe proposed method was economical, simple, and with good evaluation quality.
基金supported by the National Natural Science Found-ation of China(No.5217051173)。
文摘With the widespread application of electrification and intelligence of automobiles,the number of electric devices with small DC motors in automobiles has gradually increased,and the in-terior of electric vehicles is quieter.The sound quality(SQ)of small motor directly affects the pas-senger experience.Therefore,the research on the SQ of small motor is of great significance.In this paper,the objective quantification of small motor sound quality was investigated based on tradi-tional psychoacoustic metrics.The time-frequency characteristics of sound signal was analyzed to quantify the subjective perception caused by the sound of small motor.And a new psychoacoustic metrics of objective evaluation which were suitable for small motor SQ evaluation were proposed,namely specific loudness energy(SLE),specific prominence ratio index(SPRI),relative pitch exceedance(RPE)and tremolo index(TI).Then,two objective evaluation models of small motor SQ were established to characterize the multi-dimensional subjective perception attributes by using multiple linear regression(MLR)and support vector regression(SVR)respectively,which can be used for the prediction and evaluation of the small motor SQ.The results show that the prediction accuracy of the model established by SVR method was higher than that of MLR,and SVR has stronger robustness.The objective evaluation model of small motors SQ established in this study is of great importance for improving the sound quality of small motors.
文摘A novel sound quality simulation approach was proposed to optimize the acoustic performance of a four-cylinder diesel engine.Finite element analysis,single-input and multiple-output technology,flexible multi-body dynamics,and boundary element codes were used to acquire the hexahedron-element model,experimental modal frequencies,vibration velocities,and structurally radiated noise of the block,respectively.The simulated modal frequencies and vibration velocities agreed well with the experimental data,which validated the finite-element block.The acoustic response showed that considerable acoustic power levels existed in 1500-1900 Hz and 2300-2800 Hz as the main frequency ranges to optimize the block acoustics.Then,the optimal block is determined in accordance with the novel approach,which reduces the overall value,high-frequency amplitudes,and peak values of acoustic power;thus,the loudness,sharpness,and roughness decline to make the sound quieter,lower-pitched,and smoother,respectively.Finally,the optimal block was cast and bench-tested.The results reveal that the sound quality of the optimal-block engine is substantially improved as numerically expected,which verifies the effectiveness of the research approach.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)PhD Programs Foundation of Ministryof China(Grant No. 20090032110001)
文摘There are more researches on engine fan noise control focusing on reducing fan noise level through optimizing fan structure,and a lot of research achievements have been obtained.However,researches on the effect of fan noise to engine noise quality are lacking.The influences of the effects of fan structure optimization on the engine noise quality are unclear.Thus,there will be a decline in fan noise level,but the deterioration of engine noise quality.Aiming at the above problems,in consideration of fan structure design and engine noise quality,an innovative method to analyze the contribution of fan noise to engine noise quality using psychoacoustic theory is proposed.The noises of diesel engine installing different cooling fans are measured by using the acoustic pressure method.The experiment results are regarded as analysis samples.The model of sensory pleasantness is used to analyze the sound quality of a diesel engine with different cooling fans.Results show that after installing 10-blade fan in medium diameter the sensory pleasantness at each test point is increased,and the increase is 13.53% on average,which indicate the improvement of the engine noise quality.In order to verify the psychoacoustical analysis,the subjective assessment is carried out.The test result shows the noise quality of engine installed10-blade fan in medium diameter is most superior.1/3 octave frequency spectrum analysis is used to study the reason of the improvement of engine noise quality.It is found that after installing proper cooling fan the sound pressure level below 400 Hz are obviously increased,the frequency assignment and spectral envelope are more reasonable and a proper cooling fan can optimize the spectrum structure of the engine noise.The psychoacoustic study is applied in the contribution of fan noise to engine noise,and the idea of engine sound quality improvement through the structure optimization is proposed.
文摘This paper studies the acoustics of a frost free three door domestic refrigerator.Then,as a case study,the radiated noise reduction in the refrigerator using a natural material base composite is presented.Composites manufactured out of Jute,which is a plant fiber abundantly and cheaply available in India and Bangladesh are used in the noise reduction in the refrigerator.Mostly in this work,composites made out of felts of jute were used as barriers for noise control of the refrigerator.Measured acoustical,thermal and physical properties of various jute composites are reported.Noise sources in the refrigerator were characterized using sound intensity method and sound pressure level measurements.It is found that the compressor and the evaporator fan are the predominant noise sources.The jute composite treatment done to the refrigerator shell around the evaporator fan reduced the refrigerator noise level by 5 dB and improved its measured sound quality metrics without affecting the cooling performance of the refrigerator.
基金We are grateful for the funding from the National Key Research and Development Program of China(grant No.:2016YFC1202203).
文摘Animal models are crucial for the study of severe infectious diseases,which is essential for determining their pathogenesis and the development of vaccines and drugs.Animal experiments involving risk grade 3 agents such as SARS CoV,HIV,M.tb,H7N9,and Brucella must be conducted in an Animal Biosafety Level 3(ABSL-3)facility.Because of the in vivo work,the biosafety risk in ABSL-3 facilities is higher than that in BSL-3 facilities.Undoubtedly,management practices must be strengthened to ensure biosafety in the ABSL-3 facility.Meanwhile,we cannot ignore the reliable scientific results obtained from animal experiments conducted in ABSL-3 laboratories.It is of great practical significance to study the overall biosafety concepts that can increase the scientific data quality.Based on the management of animal experiments in the ABSL-3 Laboratory of Wuhan University,combined with relevant international and domestic literature,we indicate the main safety issues and factors affecting animal experiment results at ABSL-3 facilities.Based on these issues,management practices regarding animal experiments in ABSL-3 facilities are proposed,which take into account both biosafety and scientifically sound data.