Underwater reverberation environments that satisfy the conditions of uniformity and isotropy of the diffuse field can be used to measure the acoustic characteristics of underwater targets.This study combines two pract...Underwater reverberation environments that satisfy the conditions of uniformity and isotropy of the diffuse field can be used to measure the acoustic characteristics of underwater targets.This study combines two practical indicators—the standard deviation of the absolute sound pressure field(to indicate uniformity)and the analysis of the wavenumber spectrum in the spherical harmonics domain(to indicate isotropy)—for an accurate evaluation of the diffusion of the sound field in a reverberation tank.A method is proposed that can improve the narrow-band diffusion of the sound field by employing a randomly fluctuating surface.An acoustic experiment was performed in a reverberation water tank(1.2 m×1 m×0.8 m),where a randomly fluctuating surface was generated by making waves.The experimental results show that as the wave motion contributes effectively to the random reflection of sound rays in all directions,the uniformity and isotropy are improved significantly when the surface is fluctuating randomly.This work helps to ensure accurate measurements of the characteristics of underwater targets in reverberation tanks.展开更多
Acoustic structure study always is the academic research interest. Diffusion ab?sorbing structure(DiflFsorber) has good research value because it has both diflFusion property and sound absorption property. Quadrati...Acoustic structure study always is the academic research interest. Diffusion ab?sorbing structure(DiflFsorber) has good research value because it has both diflFusion property and sound absorption property. Quadratic residue diffusers(QRD) structure which had good diffusion property was combined with the perforated panel which had good sound absorption property in this study. According to standard AES-4id-2001, the diffusion experiments were carried out to study QRD structure and ones composited with perforated-panels which had1 mm-thickness and perforated percentage of 3%, 5%, 8% respectively. The polar coordinate diagrams of different structure were analyzed to derive the diffusion coefficients. Results showed that the composite structure still had good diffusion performance in the frequency range from100 Hz to 800 Hz. The reflection sound energy of composite structure reduced obviously in the perforated panel resonance frequency range where there was about 2 dB reduction averagely.The study result can provide the reference for the design and development of diifsorber.展开更多
Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated...Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11874131)。
文摘Underwater reverberation environments that satisfy the conditions of uniformity and isotropy of the diffuse field can be used to measure the acoustic characteristics of underwater targets.This study combines two practical indicators—the standard deviation of the absolute sound pressure field(to indicate uniformity)and the analysis of the wavenumber spectrum in the spherical harmonics domain(to indicate isotropy)—for an accurate evaluation of the diffusion of the sound field in a reverberation tank.A method is proposed that can improve the narrow-band diffusion of the sound field by employing a randomly fluctuating surface.An acoustic experiment was performed in a reverberation water tank(1.2 m×1 m×0.8 m),where a randomly fluctuating surface was generated by making waves.The experimental results show that as the wave motion contributes effectively to the random reflection of sound rays in all directions,the uniformity and isotropy are improved significantly when the surface is fluctuating randomly.This work helps to ensure accurate measurements of the characteristics of underwater targets in reverberation tanks.
基金supported by the National Natural Science Foundation of China(11004133)open project of China communication and transportation industry key laboratory of environmental technology
文摘Acoustic structure study always is the academic research interest. Diffusion ab?sorbing structure(DiflFsorber) has good research value because it has both diflFusion property and sound absorption property. Quadratic residue diffusers(QRD) structure which had good diffusion property was combined with the perforated panel which had good sound absorption property in this study. According to standard AES-4id-2001, the diffusion experiments were carried out to study QRD structure and ones composited with perforated-panels which had1 mm-thickness and perforated percentage of 3%, 5%, 8% respectively. The polar coordinate diagrams of different structure were analyzed to derive the diffusion coefficients. Results showed that the composite structure still had good diffusion performance in the frequency range from100 Hz to 800 Hz. The reflection sound energy of composite structure reduced obviously in the perforated panel resonance frequency range where there was about 2 dB reduction averagely.The study result can provide the reference for the design and development of diifsorber.
文摘Twelve volunteers with normal hearing (9 males and 3 females) participated in this work The sound transfer functions (STFS) from diffuse sound field to the subject's eardrums were measured and correlated to the temporary threshold shift (TTS) due to fiffuse-exposure.A probe tube with a miniature microphone was used for STF measurements in which successive 1/3 oct bandwidth random noise with central frequency from 0.25 kKz to 8 kHz were used. The subjects were divided into two groups, with the STF maxima at 2 kHz and 4 kHz respectively Pre- and post- exposure sweep Bekesy audiograms were recorded and the temporary thresh old shift calctilated as the difference between the two. Frequency of the maximum TTS was correlated to that of the maximum STF. The average TTS was very small or zero at frequen cies below the band noise exposure , but was noticeable even at the highest measured frequency (8 kHz) for beyond the noise band. Also individual differences in STF were found at frequencies between 2 kHz and 4 kHz