The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and featu...The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.展开更多
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv...The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.展开更多
The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representati...The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representations of metal ribbed plates attributes are obtained and the relationship between the admittance features and the impact sound features are established via correlation analysis method. Then, materialattributesrelated impact sound features are obtained indirectly. Finally, the performances of different sound features for the material recognition of ribbedmetal plates are verified through the Support Vector Machine classifier. The results indicate that the obtained four sets of features can effectively identify the materials of the metal ribbed plates, while the accuracy of a single feature depends on the separable degree of the corresponding material attribute. And the features extracted based on admittance functions have higher average accuracy than that of timbre features. Therefore, the proposed sound feature extraction method based on admittance features is valid, and the extracted sound features can effectively reflect the physical attributes.展开更多
文摘The acoustic vibration signal of tank is disassembled into the sum of intrinsic mode function (IMF) by multi-resolution empirical mode decomposition (EMD) method. The instantaneous frequency is obtained, and feature transformation matrix is figured out by class scatter matrix. Multi- dimensional scale energy vector is mapped into low-dimensional eigenvector, and classification extraction is realized. This method sufficiently separates of different sound target features. The test result indicates that it is effective.
基金the National Natural Science Foundation of China(No.6210011631)in part by the China Postdoctoral Science Foundation(No.2021M692628)。
文摘The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.
基金supported by the National Natural Science Foundation of China(11574249)the Aeronautical Science Foundation of China(20131553018)
文摘The admittance features representing the physical attributes are used as the in termediates to extract the materialattributesrelated impact sound features of ribbed plates. Firstly, the admittance feature representations of metal ribbed plates attributes are obtained and the relationship between the admittance features and the impact sound features are established via correlation analysis method. Then, materialattributesrelated impact sound features are obtained indirectly. Finally, the performances of different sound features for the material recognition of ribbedmetal plates are verified through the Support Vector Machine classifier. The results indicate that the obtained four sets of features can effectively identify the materials of the metal ribbed plates, while the accuracy of a single feature depends on the separable degree of the corresponding material attribute. And the features extracted based on admittance functions have higher average accuracy than that of timbre features. Therefore, the proposed sound feature extraction method based on admittance features is valid, and the extracted sound features can effectively reflect the physical attributes.