A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteris...A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.展开更多
Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speed...Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.展开更多
In this paper, a new pseudocolor method to display sound holospectrogram is proposed and studied. On the picture of such a four-dimensional spectrogram, the horizontal axis refers to time, the vertical axis to frequen...In this paper, a new pseudocolor method to display sound holospectrogram is proposed and studied. On the picture of such a four-dimensional spectrogram, the horizontal axis refers to time, the vertical axis to frequency, the color to phase, and the brightness to magnitude. An example of display is given by employing the realized system.展开更多
Sound Recognition becomes an important tool for intrusion detection or for the monitoring of public premises exposed to personal hostility. It could further identify different sounds. The main idea of the sound recogn...Sound Recognition becomes an important tool for intrusion detection or for the monitoring of public premises exposed to personal hostility. It could further identify different sounds. The main idea of the sound recognition process in a security system is to store samples of different sound signals in the memory of the computer as references,?and?to be analyzed with respect to their frequencies components. In this paper, the sound signal of an unknown source would be analyzed and compared with all the available reference samples,?and?then recognition is made according to the closest sample. The developed security system consists of two main parts: the spectrum analyzer that converts the sound signal to spectrograms. It is designed based on the real-time analyzes, and the recognizer which compares the spectrograms and gives the decision of the recognition by using a special criterion. Experimental results prove that the accuracy of the proposed system can be 98.33% for the selected sample of signals.展开更多
基金Project(2682013BR009)supported by the Fundamental Research Funds of the Central Universities,ChinaProject(2011AA11A103-2-2)the National High-Technology Research and Development Program of China
文摘A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.
文摘Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.
基金Supported by the National Natural Science Foundation of China
文摘In this paper, a new pseudocolor method to display sound holospectrogram is proposed and studied. On the picture of such a four-dimensional spectrogram, the horizontal axis refers to time, the vertical axis to frequency, the color to phase, and the brightness to magnitude. An example of display is given by employing the realized system.
文摘Sound Recognition becomes an important tool for intrusion detection or for the monitoring of public premises exposed to personal hostility. It could further identify different sounds. The main idea of the sound recognition process in a security system is to store samples of different sound signals in the memory of the computer as references,?and?to be analyzed with respect to their frequencies components. In this paper, the sound signal of an unknown source would be analyzed and compared with all the available reference samples,?and?then recognition is made according to the closest sample. The developed security system consists of two main parts: the spectrum analyzer that converts the sound signal to spectrograms. It is designed based on the real-time analyzes, and the recognizer which compares the spectrograms and gives the decision of the recognition by using a special criterion. Experimental results prove that the accuracy of the proposed system can be 98.33% for the selected sample of signals.