In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred...In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.展开更多
In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred...In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.展开更多
With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical comp...With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.展开更多
Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely S...Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.展开更多
Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere s...Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.展开更多
Twenty-two earthquakes (ML=2.2-3.7) in the joint region of Xianshuihe, Longmenshan and An'ninghe faults are studied in this paper. The source mechanism solutions of these events are obtained using P-wave first mot...Twenty-two earthquakes (ML=2.2-3.7) in the joint region of Xianshuihe, Longmenshan and An'ninghe faults are studied in this paper. The source mechanism solutions of these events are obtained using P-wave first motion method, and the characteristics of the source stress field and rupture in the joint region are summarized preliminarily with some results of other researchers. Being strongly extruded by the approximately horizontal regional stress with the direction from north-west to south-east and the effect of the complex tectonics in the region, the source stress field has complex and variable characteristics. The earthquakes mainly show normal or strike-slip faults in Yajiang, North-triangle and west of Chengdu-block areas, indicating that the vertical forces have been playing an important role in the source stress fields, while the earthquakes mainly show reverse or strike-slip faults in Baoxing-Tianquan area, with the horizontal components of the principal pressure stress axes identical to the south-west direction to which the shallow mass is moving. We think that the manifold combinations of earthquake faults are the micro-mechanism based upon which the large regional shallow crust mass has been moving continually.展开更多
基金The National Key Basic Research Program under the Project "Mechanism and Prediction of Continental Strong Earthquake"(G1998040700) and Joint Seismological Science Foundation of China (100108).
文摘In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.
文摘In the paper, source mechanisms of 33 small-moderate earthquakes occurred in Yunnan are determined by modeling of regional waveforms from Yunnan digital seismic network. The result shows that most earthquakes occurred within or near the Chuandian rhombic block have strike-slip mechanism. The orientations of maximum compressive stresses obtained from source mechanism are changed from NNW-SSN to NS in the areas from north to south of the block, and tensile stresses are mainly in ENE-WSW or NE-SE. In the eastern Tibetan Plateau, the orientations of maximum compressive stress radiate toward outside from the plateau, and the tensile stress orientations mostly parallel to arc structures. Near 28N the orientations of both maximum compressive stress and tensile stress changed greatly, and the boundary seems to correspond to the southwestern extended line of Longmenshan fault. Outside of the Chuandian rhombic block, the orientations of P and T axes are some different from those within the block. The comparison shows that the source mechanism of small-moderate events presented in the paper is consistence with that of moderate-strong earthquakes determined by Harvard University, which means the source mechanism of small-moderate events can be used to study the tectonic stress field in this region.
基金funded as a sub-project under the National Science and Technology Pillar Program of China(2006BAC01B03-04-02)
文摘With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.
基金National Key Basic Research Development and Programming Project (2004CB418404) and Joint Seismological Science Foundation (105004).
文摘Based on P- and S-wave amplitudes and some clear initial P-wave motion data, we calculated focal mechanism solutions of 928 M≥2.5 earthquakes (1994-2005) in four sub-blocks of Sichuan and Yunnan Provinces, namely Sichuan-Qinghai, Yajiang, Central Sichuan and Central Yunnan blocks. Combining these calculation results with those of the focal mechanism solutions of moderately strong earthquakes, we analyzed the stress field characteristics and dislocation types of seismogenic faults that are distributed in the four sub-blocks. The orientation of principal compressive stress for each block is: EW in Sichuan-Qinghai, ESE or SE in Yajiang, Central Sichuan and Central Yunnan blocks. Based on a great deal of focal mechanism data, we designed a program and calculated the directions of the principal stress tensors, σ1, σ2 and σ3, for the four blocks. Meanwhile, we estimated the difference (also referred to as consistency parameter θ^- ) between the force axis direction of focal mechanism solution and the direction of the mean stress tensor of each block. Then we further analyzed the variation of θ^- versus time and the dislocation types of seismogenic faults. Through determination of focal mechanism solutions for each block, we present information on the variation in θ^- value and dislocation types of seismogenic faults.
文摘Using the technique of seismic moment tensor inversion, the source mechanisms of 10 earthquakes with Ms5.2that occurred in China from November 1996 to January 1998 were determined rapidly. The determined resultswere sent as 'Bulletins of Source Mechanism Parameters of Earthquakes' to the Seismic Regime Guards' Office,China Seismological Bureau, and the relevant provincial seismological bureaus. These bulletins have played rolein the fast response to large earthquakes.
文摘Twenty-two earthquakes (ML=2.2-3.7) in the joint region of Xianshuihe, Longmenshan and An'ninghe faults are studied in this paper. The source mechanism solutions of these events are obtained using P-wave first motion method, and the characteristics of the source stress field and rupture in the joint region are summarized preliminarily with some results of other researchers. Being strongly extruded by the approximately horizontal regional stress with the direction from north-west to south-east and the effect of the complex tectonics in the region, the source stress field has complex and variable characteristics. The earthquakes mainly show normal or strike-slip faults in Yajiang, North-triangle and west of Chengdu-block areas, indicating that the vertical forces have been playing an important role in the source stress fields, while the earthquakes mainly show reverse or strike-slip faults in Baoxing-Tianquan area, with the horizontal components of the principal pressure stress axes identical to the south-west direction to which the shallow mass is moving. We think that the manifold combinations of earthquake faults are the micro-mechanism based upon which the large regional shallow crust mass has been moving continually.