The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models wer...The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models were improved by modifying the acoustic model and adopting the Bayesian Markov-chain-Monte-Carlo inversion method.The source parameters of near-surface small-yield chemical explosions were analyzed via the improved seismoacoustic analysis model and by the estimation accuracy of seismoacoustic joint inversion.Estimation and analysis results showed that the improved seismoacoustic analysis model considered ground shock coupling and the impact of explosion products ejecting from the surface so that the improved acoustic impulse relation was more consistent with the measured data than the Ford impulse relation.It is suitable for deep-burial,shallow-burial,and near-surface aerial explosions.Furthermore,trade-off relationships were declined through the application of the improved model to source parameter inversion for near-surface small-yield chemical explosions,and source parameter estimation accuracy was improved.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
基金the National Natural Science Foundation of China(No.12072290).
文摘The seismoacoustic analysis method has broad potential applications to source parameter estimation for near-surface explosion events such as industrial explosions and terrorist attacks.In this study,current models were improved by modifying the acoustic model and adopting the Bayesian Markov-chain-Monte-Carlo inversion method.The source parameters of near-surface small-yield chemical explosions were analyzed via the improved seismoacoustic analysis model and by the estimation accuracy of seismoacoustic joint inversion.Estimation and analysis results showed that the improved seismoacoustic analysis model considered ground shock coupling and the impact of explosion products ejecting from the surface so that the improved acoustic impulse relation was more consistent with the measured data than the Ford impulse relation.It is suitable for deep-burial,shallow-burial,and near-surface aerial explosions.Furthermore,trade-off relationships were declined through the application of the improved model to source parameter inversion for near-surface small-yield chemical explosions,and source parameter estimation accuracy was improved.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.