Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq...Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.展开更多
This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating te...This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating tests are carried out using the new formula. The comparison with other reconstruction formulas proves that the new formula is more effective. By using acoustic holography method, some interesting results about the noise of a vehicle are shown. The results proves that acoustic holography is an effective method for the identification of the complex noise sources.展开更多
基金supported by National Natural Science Foundation of China(Nos.11505040,11261140326,11405038 and 51577043)China Postdoctoral Science Foundation(Nos.2016M591518,2015M570283)HIT.NSRIF under Grant No.2017008
文摘Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.
基金This work wassupportedby the Natural Science Foundation of China(No.59775020).
文摘This paper presents the method named acoustic holography which can be used to identify noise sources. A new formula of holography reconstruction is obtained, based on the Kirchhoff integral formula. Some simulating tests are carried out using the new formula. The comparison with other reconstruction formulas proves that the new formula is more effective. By using acoustic holography method, some interesting results about the noise of a vehicle are shown. The results proves that acoustic holography is an effective method for the identification of the complex noise sources.