期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Least-squares finite-element method for shallow-water equations with source terms 被引量:2
1
作者 Shin-Jye Liang Tai-Wen Hsu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第5期597-610,共14页
Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of s... Numerical solution of shallow-water equations (SWE) has been a challenging task because of its nonlinear hyperbolic nature, admitting discontinuous solution, and the need to satisfy the C-property. The presence of source terms in momentum equations, such as the bottom slope and friction of bed, compounds the difficulties further. In this paper, a least-squares finite-element method for the space discretization and θ-method for the time integration is developed for the 2D non-conservative SWE including the source terms. Advantages of the method include: the source terms can be approximated easily with interpolation functions, no upwind scheme is needed, as well as the resulting system equations is symmetric and positive-definite, therefore, can be solved efficiently with the conjugate gradient method. The method is applied to steady and unsteady flows, subcritical and transcritical flow over a bump, 1D and 2D circular dam-break, wave past a circular cylinder, as well as wave past a hump. Computed results show good C-property, conservation property and compare well with exact solutions and other numerical results for flows with weak and mild gradient changes, but lead to inaccurate predictions for flows with strong gradient changes and discontinuities. 展开更多
关键词 Shallow-water equations source terms Least-squares finite-element method DAM-BREAK C-property
下载PDF
Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids 被引量:10
2
作者 Zhi-li WANG Yan-fen GENG 《Water Science and Engineering》 EI CAS CSCD 2013年第1期91-105,共15页
In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosi... In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution. 展开更多
关键词 shallow water equations with porosity source term Roe-type Riemann solver finitevolume method unstructured grid
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部