An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration ...An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.展开更多
South China Sea, its circulation and connection with other parts of the world oceans, poses important scientific questions. From the prospective view, we postulate ten key research directions to be pursued in the comi...South China Sea, its circulation and connection with other parts of the world oceans, poses important scientific questions. From the prospective view, we postulate ten key research directions to be pursued in the coming future, including ventilation of a monsoon dominated sea, water mass formation/transformation, heat/salt and water mass balance, energetics and mixing, mesoscale eddies, the role of typhoon, deep circulation and paleoclimate records, interaction with adjacent oceans, upwelling and ecology system, and response to climate changes.展开更多
In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (W...In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS.展开更多
CTD temperature, salinity and ADCP current data, which were observed by R/V Shiyan No. 3 during the intensive observational period (IOP) of the South China Sea monsoon experiment (SCSMEX), have been analyzed. Some st...CTD temperature, salinity and ADCP current data, which were observed by R/V Shiyan No. 3 during the intensive observational period (IOP) of the South China Sea monsoon experiment (SCSMEX), have been analyzed. Some study results from observations at a mooring station located at the vicinity of continental slope off the south of Dongsha Islands are shown. The dynamic and thermody namic structures as wall as their changes are analyzed to describe the upper-ocean variation in the northern South China Sea during the summer monsoon onset and maintaining periods. The response of near surface water temperature, salinity and current to local sea surface winds is also discussed.展开更多
Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orien...Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.展开更多
Data used in this study are temperature/depth profiles taken over the upper 400 m of the ocean in the southern South China Sea (4°-14° N, 106°-120° E) for the period 1961-1973. The data are analyze...Data used in this study are temperature/depth profiles taken over the upper 400 m of the ocean in the southern South China Sea (4°-14° N, 106°-120° E) for the period 1961-1973. The data are analyzed on the grid 2 (latitude) by 2 (longitude) in space and bimonthly in time. The vertically averaged temperature (TAV) over the upper 100 m of the ocean is calculated as the estimate of the heat content in the upper ocean.The TAV is cooler in the northwest region of the study area and warmer in the southeast in the annual and seasonal mean figures. The first EOF (Empirical Orthogonal Function) of anomalous TAV accounts for 41 % of the total variance for the period 1961-1973. The time function associated with it displays a significant interannual changes in the heat content, with 2-4 a oscillation period and associated with the ENSO events. During ENSO event TAV increases with the tendency of increasing towards equator along the basin. This anomalous states also exist in the water layers below 100 m depth. The isotherm is usually deepened during ENSO period. The deepened amplitude of the isotherm decreases with depth, and varies with ENSO events, seasons and regions. The reason for that is related to weak monsoon in El Nino year and associated eddy activity. Besides this, there is a gain in heat in the upper ocean because of the strong subtropical high during ENSO period.展开更多
According to the marine records from the Bay of Bengal, northeastern Indian Ocean, and the continental records from the South China, the authors make a detailed discussion in this paper about the correlation between t...According to the marine records from the Bay of Bengal, northeastern Indian Ocean, and the continental records from the South China, the authors make a detailed discussion in this paper about the correlation between them and their implication of rapid climatic change. The marine records show its good response to the high latitudes both for cold events and for warm ones while the continental records mainly mirror those cold Heinrich events corresponding to the North Atlantic but bear strongly a local color in reflecting warm events. The authors assume that the heat transmission style may cause the unbalanced coupling relationship.展开更多
Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the s...Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.展开更多
Mesoscale eddies (MEs) in the South China Sea (SCS) simulated by a quasi-global eddy-resolving ocean general circulation model are evaluated against satellite data during 1993-2007. The modeled ocean data show mor...Mesoscale eddies (MEs) in the South China Sea (SCS) simulated by a quasi-global eddy-resolving ocean general circulation model are evaluated against satellite data during 1993-2007. The modeled ocean data show more activity than shown by the satellite data and reproduces more eddies in the SCS. A total of 345 (428) cyclonic eddies (CEs) and 330 (371) anti-cyclonic eddies (AEs) generated for satellite (model) data are identified during the study period, showing increase of -24% and -12% for the model data, respectively. Compared with eddies in satellite, the simulated eddies tend to have smaller radii, larger amplitudes, a slightly longer lifetime, faster movement and rotation speed, a slightly larger nonlinear properties (U/c) in the model. However, the spatial distribution of generated eddies appears to be inhomogeneous, with more CEs in the northern part of SCS and fewer AEs in the southern part. This is attributed to the exaggerated Kuroshio intrusion in the model because the small islands in the Luzon Strait are still not well resolved although the horizontal resolution reaches (1/10)°. The seasonal variability in the number and the amplitude of eddies generated is also investigated.展开更多
In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to in...In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.展开更多
Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer ...Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer monsoon( SCSSM), the results are obtained as follows : Most of IOD events have a closely positive relation to simultaneous ENSO events in summer and autumn. IOD events in autumn ( mature phase) are also closely related to ENSO events in winter ( mature phase). When these two kinds of events happen in phase, i.e. , positive (negative) IOD events are coupled with E1 Nifío (La Nifía) events, they are always followed by late ( or early) onsets of SCSSM. On the contrary, when these two kinds of events happen out of phase, i.e. positive (negative) IOD events are coupled with La Nifia ( E1 Nifío) events, they are followed by normal onsets of SCSSM. In addition, single IOD events or single ENSO events cannot correspond well to the abnormal onset of SCSSM.展开更多
The spatial and temporal variation characteristics of the waves in the South China Sea (SCS) in the boreal winter during the period of 1979/1980-2011/2012 have been investigated based on the European Centre for Medi...The spatial and temporal variation characteristics of the waves in the South China Sea (SCS) in the boreal winter during the period of 1979/1980-2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim (ERA-Interim) reanalysis dataset. The results show that the lead- ing mode of significant wave height anomalies (SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation (PDO). The interannual variation of the SWHA has a significant negative correlation with the E1 Nino Southern Oscillation (ENSO) in the same season and the preceding autumn. For a better understanding of the physi- cal mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmo- spheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the E1 Nino (La Nino), the anomalous Philippine Sea anticyclone (cyclone) dominates over the Western North Pacific, helps to weaken (enhance) East Asian winter monsoon and then emerges the negative (positive) SWHA in the SCS.展开更多
Methods for studying oceanic circulation from hydrographic data are reviewed in the context of their applications in the South China Sea. These methods can be classified into three types according to their different d...Methods for studying oceanic circulation from hydrographic data are reviewed in the context of their applications in the South China Sea. These methods can be classified into three types according to their different dynamics as follows: (1) descriptive methods, (2) diagnostic methods without surface and bottom forcing, and (3) diagnostic methods with the above boundary forcing. The paper discusses the progress made in the above methods together with the advancement of study in the South China Sea circulation.展开更多
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is dis...The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.展开更多
The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1...The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.展开更多
A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and...A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter(EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height(SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature(SST), mean absolute dynamic topography(MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity.The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation.展开更多
Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 30...Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 300 m. Ishii's temperature data, based on the World Ocean Database 2005(WOD05) and World Ocean Atlas 2005(WOA05), is used to assess the model performance by comparing the spatial patterns of seasonal OHC anomaly(OHCa) climatology, OHC climatology, monthly OHCa climatology, and interannual variability of OHCa. The spatial patterns in Ishii's data set show that the seasonal SCS OHCa climatology, both in winter and summer, is strongly affected by the wind stress and the current circulations in the SCS and its neighboring areas. However, the CMIP5 models present rather different spatial patterns and only a few models properly capture the dominant features in Ishii's pattern. Among them, GFDL-ESM2 G is of the best performance. The SCS OHC climatology in the upper 300 m varies greatly in different models. Most of them are much greater than those calculated from Ishii's data. However, the monthly OHCa climatology in each of the 17 CMIP5 models yields similar variation and magnitude as that in Ishii's. As for the interannual variability, the standard deviations of the OHCa time series in most of the models are somewhat larger than those in Ishii's. The correlation between the interannual time series of Ishii's OHCa and that from each of the 17 models is not satisfactory. Among them, BCC-CSM1.1 has the highest correlation to Ishii's, with a coefficient of about 0.6.展开更多
The South China Sea(SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000–2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies...The South China Sea(SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000–2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies. The results showed cold-core cyclonic(warm-core anticyclonic) eddies tend to cool(warm) the overlying atmosphere and cause surface winds to decelerate(accelerate). More than 5% of the total variance of turbulent heat fluxes, surface wind speed and evaporation rate are induced by mesoscale eddies. Furthermore, mesoscale eddies locally affect the columnar water vapor, cloud liquid water, and rain rate. Dynamical analyses indicated that both variations of atmospheric boundary layer stability and sea level pressure are responsible for atmospheric anomalies over mesoscale eddies. To reveal further details about the mechanisms of atmospheric responses to mesoscale eddies, atmospheric manifestations over a pair of cold and warm eddies in the southwestern SCS were simulated. Eddy-induced heat flux anomalies lead to changes in atmospheric stability. Thus, anomalous turbulence kinetic energy and friction velocity arise over the eddy dipole, which reduce(enhance) the vertical momentum transport over the cold(warm) eddy, resulting in the decrease(increase) of sea surface wind. Diagnoses of the model's momentum balance suggested that wind speed anomalies directly over the eddy dipole are dominated by vertical mixing terms within the atmospheric boundary layer, while wind anomalies on the edges of eddies are produced by atmospheric pressure gradient forces and atmospheric horizontal advection terms.展开更多
Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the...Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the mid-lower troposphere in spring (April-May), the mei-yu rainfall in the Yangtze River- Huaihe River basin, and the activities of the South China Sea summer monsoon (SCSSM) are analyzed by using correlation and composite analyses. Results show that a significant positive correlation exists between mei-yu rainfall and air temperature in the middle latitudes above the western Pacific, while a significant negative correlation is located to the southwest of the Baikal Lake. When the land-ocean thermal anomaly difference is stronger in spring, the western Pacific subtropical high (WPSH) will be weaker and retreat eastward in summer (June-July), and the SCSSM will be stronger and advance further north, resulting in deficient moisture along the mei-yu front and below-normal precipitation in the mid and lower reaches of the Yangtze River, and vice versa for the weaker difference case. The effects and relative importance of the land and ocean anomalous heating on monsoon variability is also compared. It is found that the land and ocean thermal anomalies are both closely related to the summer circulation and mei-yu rainfall and SCSSM intensity, whereas the land heating anomaly is more important than ocean heating in changing the land-ocean thermal contrast and hence the summer monsoon intensity.展开更多
基金This research was funded by Frontier Research System for Global Change through its sponsorship of the International Pacific Research Center (IPRC) and by the U. S. National Science Foundation under contract Grant No. OCEOO - 95906.
文摘An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA11010103 and XDA11010203the National Natural Science Foundation of China under contract No.41176024the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs(CAS/SAFEA) International Partnership Program for Creative Research Teams
文摘South China Sea, its circulation and connection with other parts of the world oceans, poses important scientific questions. From the prospective view, we postulate ten key research directions to be pursued in the coming future, including ventilation of a monsoon dominated sea, water mass formation/transformation, heat/salt and water mass balance, energetics and mixing, mesoscale eddies, the role of typhoon, deep circulation and paleoclimate records, interaction with adjacent oceans, upwelling and ecology system, and response to climate changes.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB950400 and 2013CB430301)the National Natural Science Foundation of China (Grant Nos. 41276025 and 41176023)+2 种基金the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY201106036)The OFES simulation was conducted on the Earth Simulator under the support of JAMSTECsupported by the Data Sharing Infrastructure of Earth System Science-Data Sharing Service Center of the South China Sea and adjacent regions
文摘In this study, the upper ocean heat content (OHC) variations in the South China Sea (SCS) during 1993- 2006 were investigated by examining ocean temperatures in seven datasets, including World Ocean Atlas 2009 (WOA09) (climatology), Ishii datasets, Ocean General Circulation ModeI for the Earth Simulator (OFES), Simple Ocean Data Assimilation system (SODA), Global Ocean Data Assimilation System (GODAS), China Oceanic ReAnalysis system (CORA) , and an ocean reanalysis dataset for the joining area of Asia and Indian-Pacific Ocean (AIPO1.0). Among these datasets, two were independent of any numerical model, four relied on data assimilation, and one was generated without any data assimilation. The annual cycles revealed by the seven datasets were similar, but the interannual variations were different. Vertical structures of temperatures along the 18~N, 12.75~N, and 120~E sections were compared with data collected during open cruises in 1998 and 2005-08. The results indicated that Ishii, OFES, CORA, and AIPO1.0 were more consistent with the observations. Through systematic shortcomings and advantages in presenting the upper comparisons, we found that each dataset had its own OHC in the SCS.
基金South China Sea Monsoon Experiment (SCSMEX) and by the Guangdong Provincial NaturalScience Foundation under contract No. 97027
文摘CTD temperature, salinity and ADCP current data, which were observed by R/V Shiyan No. 3 during the intensive observational period (IOP) of the South China Sea monsoon experiment (SCSMEX), have been analyzed. Some study results from observations at a mooring station located at the vicinity of continental slope off the south of Dongsha Islands are shown. The dynamic and thermody namic structures as wall as their changes are analyzed to describe the upper-ocean variation in the northern South China Sea during the summer monsoon onset and maintaining periods. The response of near surface water temperature, salinity and current to local sea surface winds is also discussed.
基金Supported by SCSIO(LYQY200302)the Chinese Ministry of Science and Technology(G2000046701)+2 种基金the Guangdong Department of Science and Technology(2002C32604)the Guangdong Natural Science Foundation(021557)the National Natural Science Foundation of China(4000161958).
文摘Three-component Ocean Bottom Seismometers, portable land stations and marine air gun seismic sources were used to carry out an onshore-offshore deep seismic profile in northeastern South China Sea. This profile, orientated in NNW-SSE, was as long as 500 km and perpendicular to the strike of regional tectonics. The offshore data were processed in Taiwan Ocean University using a number of available software and the onshore data were analyzed in South China Sea Institute of Oceanology by new-written programs and public software. Preliminary results show that the seismic data are in good quality and contain rich information of deep structure. Seismic phases, e.g. Pg, PmP and Pn, are identified in the offset range 5~220 kin, which will provide an important dataset for the deep crustal structure and oil-gas basin evolution studies of this region.
文摘Data used in this study are temperature/depth profiles taken over the upper 400 m of the ocean in the southern South China Sea (4°-14° N, 106°-120° E) for the period 1961-1973. The data are analyzed on the grid 2 (latitude) by 2 (longitude) in space and bimonthly in time. The vertically averaged temperature (TAV) over the upper 100 m of the ocean is calculated as the estimate of the heat content in the upper ocean.The TAV is cooler in the northwest region of the study area and warmer in the southeast in the annual and seasonal mean figures. The first EOF (Empirical Orthogonal Function) of anomalous TAV accounts for 41 % of the total variance for the period 1961-1973. The time function associated with it displays a significant interannual changes in the heat content, with 2-4 a oscillation period and associated with the ENSO events. During ENSO event TAV increases with the tendency of increasing towards equator along the basin. This anomalous states also exist in the water layers below 100 m depth. The isotherm is usually deepened during ENSO period. The deepened amplitude of the isotherm decreases with depth, and varies with ENSO events, seasons and regions. The reason for that is related to weak monsoon in El Nino year and associated eddy activity. Besides this, there is a gain in heat in the upper ocean because of the strong subtropical high during ENSO period.
基金Instrument Developing Project of the Chinese Academy of Sciences(YZ201136)National Natural Science Foundation of China(41106086,41474065,41376059,41376061,91428205,41576036,41076028,41476167,and 41606080)Chinese Academy of Sciences Scholarship,the Strat
基金The study is supported by the National Key Project ( No. 19980 40 80 0 ) and National Natural Science Foundation of China( Nos.
文摘According to the marine records from the Bay of Bengal, northeastern Indian Ocean, and the continental records from the South China, the authors make a detailed discussion in this paper about the correlation between them and their implication of rapid climatic change. The marine records show its good response to the high latitudes both for cold events and for warm ones while the continental records mainly mirror those cold Heinrich events corresponding to the North Atlantic but bear strongly a local color in reflecting warm events. The authors assume that the heat transmission style may cause the unbalanced coupling relationship.
基金the National Basic Research Program of China under contract Nos 2011CB403501 and 2012CB417402the Open Research Foundation for the State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,State Oceanic Administration under contract No. SOED1210the Fund for Creative Research Groups by NSFC under contract No. 41121064
文摘Effect of Langmuir circulation (LC) on upper ocean mixing is investigated by a two-way wave-current coupled model. The model is coupled of the ocean circulation model ROMS (regional ocean modeling system) to the surface wave model SWAN (simulating waves nearshore) via the model-coupling toolkit. The LC already certified its importance by many one-dimensional (1D) research and mechanism analysis work. This work focuses on inducing LC's effect in a three-dimensional (3-D) model and applying it to real field modeling. In ROMS, the Mellor-Yamada turbulence closure mixing scheme is modified by including LC's effect. The SWAN imports bathymetry, free surface and current information from the ROMS while exports signifi- cant wave parameters to the ROMS for Stokes wave computing every 6 s. This coupled model is applied to the South China Sea (SCS) during September 2008 cruise. The results show that LC increasing turbulence and deepening mixed layer depth (MLD) at order of O (10 m) in most of the areas, especially in the north part of SCS where most of our measurements operated. The coupled model further includes wave break- ing which will brings more energy into water. When LC works together with wave breaking, more energy is transferred into deep layer and accelerates the MLD deepening. In the north part of the SCS, their effects are more obvious. This is consistent with big wind event in the area of the Zhujiang River Delta. The shallow water depth as another reason makes them easy to influence the ocean mixing as well.
基金The National Key Program for Developing Basic Science of China under contract No.2013CB956204the National Natural Science Foundation of China under contract Nos 41275084 and 41575084the Strategic Priority Research of the Chinese Academy of Science under contract No.XDA 11010304
文摘Mesoscale eddies (MEs) in the South China Sea (SCS) simulated by a quasi-global eddy-resolving ocean general circulation model are evaluated against satellite data during 1993-2007. The modeled ocean data show more activity than shown by the satellite data and reproduces more eddies in the SCS. A total of 345 (428) cyclonic eddies (CEs) and 330 (371) anti-cyclonic eddies (AEs) generated for satellite (model) data are identified during the study period, showing increase of -24% and -12% for the model data, respectively. Compared with eddies in satellite, the simulated eddies tend to have smaller radii, larger amplitudes, a slightly longer lifetime, faster movement and rotation speed, a slightly larger nonlinear properties (U/c) in the model. However, the spatial distribution of generated eddies appears to be inhomogeneous, with more CEs in the northern part of SCS and fewer AEs in the southern part. This is attributed to the exaggerated Kuroshio intrusion in the model because the small islands in the Luzon Strait are still not well resolved although the horizontal resolution reaches (1/10)°. The seasonal variability in the number and the amplitude of eddies generated is also investigated.
基金The National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A506the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers under contract No.U1406404+1 种基金the National Basic Research Program(973 Program)of China under contract No.2011CB956000the National Natural Science Foundation of China under contract No.40476016
文摘In this study, we develop a variable-grid global ocean general circulation model (OGCM) with a fine grid (1/6)° covering the area from 20°S-50°N and from 99°-150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea (SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.
基金This work was supported by the National Natural Science Foundation of China under contract No.40275026the National Key Program for Developing Basic Science of China under contract No.G1998040900 Part I.
文摘Using Reynolds and Smith 1950 - 1998 re-constructed monthly-mean SST to discuss the relationship between the ENSO and Indian Ocean dipole (IOD) and their possible connection with the onset of South China Sea summer monsoon( SCSSM), the results are obtained as follows : Most of IOD events have a closely positive relation to simultaneous ENSO events in summer and autumn. IOD events in autumn ( mature phase) are also closely related to ENSO events in winter ( mature phase). When these two kinds of events happen in phase, i.e. , positive (negative) IOD events are coupled with E1 Nifío (La Nifía) events, they are always followed by late ( or early) onsets of SCSSM. On the contrary, when these two kinds of events happen out of phase, i.e. positive (negative) IOD events are coupled with La Nifia ( E1 Nifío) events, they are followed by normal onsets of SCSSM. In addition, single IOD events or single ENSO events cannot correspond well to the abnormal onset of SCSSM.
基金The National Basic Research Program(973 Program) of China under contract No.2011CB403501
文摘The spatial and temporal variation characteristics of the waves in the South China Sea (SCS) in the boreal winter during the period of 1979/1980-2011/2012 have been investigated based on the European Centre for Medium-range Weather Forecasts interim (ERA-Interim) reanalysis dataset. The results show that the lead- ing mode of significant wave height anomalies (SWHA) in the SCS exhibits significant interannual variation and a decadal shift around the mid-1990s, and features a basin-wide pattern in the entire SCS with a center located in the west of the Luzon Strait. The decadal change from a weak regime to a strong regime is mainly associated with the enhancement of winter monsoon modulated by the Pacific decadal oscillation (PDO). The interannual variation of the SWHA has a significant negative correlation with the E1 Nino Southern Oscillation (ENSO) in the same season and the preceding autumn. For a better understanding of the physi- cal mechanism between the SCS ocean waves and ENSO, further investigation is made by analyzing atmo- spheric circulation. The impact of the ENSO on the SWHA over the SCS is bridged by the East Asian winter monsoon and Pacific-East Asian teleconnection in the lower troposphere. During the E1 Nino (La Nino), the anomalous Philippine Sea anticyclone (cyclone) dominates over the Western North Pacific, helps to weaken (enhance) East Asian winter monsoon and then emerges the negative (positive) SWHA in the SCS.
基金supported by the National key program for Derelop-ing Basic Sciences(G 1999043805 and G19999043810)the National Natural Science Foundation of China(Grant No.40076009)the Chinese Academny of Sciences(KZCX1-SW-01-16).
文摘Methods for studying oceanic circulation from hydrographic data are reviewed in the context of their applications in the South China Sea. These methods can be classified into three types according to their different dynamics as follows: (1) descriptive methods, (2) diagnostic methods without surface and bottom forcing, and (3) diagnostic methods with the above boundary forcing. The paper discusses the progress made in the above methods together with the advancement of study in the South China Sea circulation.
基金This study was supported by the project of the National Natural Science Foundation of China"Response of inter-decadal variability of South China Sea summer monsoon to the whole globe variability”under contract number 9021l010“Interannual to interdecadal variability in circulation in the tropical Pa-cific Ocean”under contract number 40136010.
文摘The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.
基金the National Science Foundation of China through Grants Nos.40520140074,40136010(for G.Fang),40476016(for Z.Wei)partly supported by The National Science Foundation(U.S.A)through Grant OCE-02-19782 and ONR Grants Nos.014041.0698,014051—0272(for R.D.Susanto)partly supported b oNR through Grants 040611-8331,050303-7499(for Q.Zheng).
文摘The existing estimates of the volume transport from the Pacific Ocean to the South China Sea are summarized, showing an annual mean westward transport, with the Taiwan Strait outflow subtracted, of 3.5±2.0 Sv (1 Sv=-0^6 ma s^-1). Results of a global ocean circulation model show an annual mean transport of 3.9 Sv from the Pacific to the Indian Ocean through the South China Sea. The boreal winter transport is larger and exhibits a South China Sea branch of the Pacific-to-Indian Ocean throughflow, which originates from the western Philippine Sea toward the Indonesian Seas through the South China Sea, as well as through the Karimata and Mindoro Straits. The southwestward current near the continental slope of the northern South China Sea is shown to be a combination of this branch and the interior circulation gyre. This winter branch can be confirmed by trajectories of satellite-tracked drifters, which clearly show a flow from the Luzon Strait to the Karimata Strait in winter. In summer, the flow in the Karimata Strait is reversed. Numerical model results indicate that the Pacific water can enter the South China Sea and exit toward the Sulu Sea, but no observational evidence is available. The roles of the throughiiow branch in the circulation, water properties and air-sea exchange of the South China Sea, and in enhancing and regulating the volume transport and reducing the heat transport of the Indonesian Throughflow, are discussed.
基金The National Key Research and Development Program of China under contract No.2017YFC1404201the NSFCShandong Joint Fund for Marine Science Research Centers under contract No.U1606405+1 种基金the SOA Program on Global Change and AirSea Interactions under contract Nos GASI-IPOVAI-03 and GASI-IPOVAI-02the National Natural Science Foundation of China under contract Nos 41606040,41876029,41776016,41706035 and 41606036
文摘A 72-h fine-resolution atmosphere-wave-ocean coupled forecasting system was developed for the South China Sea and its adjacent seas. The forecasting model domain covers from from 15°S to 45°N in latitude and 99°E to135°E in longitude including the Bohai Sea, the Yellow Sea, the East China Sea, the South China Sea and the Indonesian seas. To get precise initial conditions for the coupled forecasting model, the forecasting system conducts a 24-h hindcast simulation with data assimilation before forecasting. The Ensemble Adjustment Kalman Filter(EAKF) data assimilation method was adopted for the wave model MASNUM with assimilating Jason-2 significant wave height(SWH) data. The EAKF data assimilation method was also introduced to the ROMS model with assimilating sea surface temperature(SST), mean absolute dynamic topography(MADT) and Argo profiles data. To improve simulation of the structure of temperature and salinity, the vertical mixing scheme of the ocean model was improved by considering the surface wave induced vertical mixing and internal wave induced vertical mixing. The wave and current models were integrated from January 2014 to October 2015 driven by the ECMWF reanalysis 6 hourly mean dataset with data assimilation. Then the coupled atmosphere-wave-ocean forecasting system was carried out 14 months operational running since November 2015. The forecasting outputs include atmospheric forecast products, wave forecast products and ocean forecast products. A series of observation data are used to evaluate the coupled forecasting results, including the wind, SHW, ocean temperature and velocity.The forecasting results are in good agreement with observation data. The prediction practice for more than one year indicates that the coupled forecasting system performs stably and predict relatively accurate, which can support the shipping safety, the fisheries and the oil exploitation.
基金The National Basic Research Program(973 Program)of China under contract No.2011CB403502the Major National Scientific Research Projects of China under contract No.2012CB957803+2 种基金the National Natural Science Foundation of China under contract Nos 41006018 and 41476024the Foundation for Outstanding Young and Middle-aged Scientists in Shandong Province of China under contract No.BS2011HZ019the UNESCO-IOC/WESTPAC Project"Response of marine hazards to climate change in the Western Pacific"
文摘Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 300 m. Ishii's temperature data, based on the World Ocean Database 2005(WOD05) and World Ocean Atlas 2005(WOA05), is used to assess the model performance by comparing the spatial patterns of seasonal OHC anomaly(OHCa) climatology, OHC climatology, monthly OHCa climatology, and interannual variability of OHCa. The spatial patterns in Ishii's data set show that the seasonal SCS OHCa climatology, both in winter and summer, is strongly affected by the wind stress and the current circulations in the SCS and its neighboring areas. However, the CMIP5 models present rather different spatial patterns and only a few models properly capture the dominant features in Ishii's pattern. Among them, GFDL-ESM2 G is of the best performance. The SCS OHC climatology in the upper 300 m varies greatly in different models. Most of them are much greater than those calculated from Ishii's data. However, the monthly OHCa climatology in each of the 17 CMIP5 models yields similar variation and magnitude as that in Ishii's. As for the interannual variability, the standard deviations of the OHCa time series in most of the models are somewhat larger than those in Ishii's. The correlation between the interannual time series of Ishii's OHCa and that from each of the 17 models is not satisfactory. Among them, BCC-CSM1.1 has the highest correlation to Ishii's, with a coefficient of about 0.6.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41675043 and 41375050)
文摘The South China Sea(SCS) is an eddy-active area. Composite analyses based on 438 mesoscale ocean eddies during 2000–2012 revealed the status of the atmospheric boundary layer is influenced remarkably by such eddies. The results showed cold-core cyclonic(warm-core anticyclonic) eddies tend to cool(warm) the overlying atmosphere and cause surface winds to decelerate(accelerate). More than 5% of the total variance of turbulent heat fluxes, surface wind speed and evaporation rate are induced by mesoscale eddies. Furthermore, mesoscale eddies locally affect the columnar water vapor, cloud liquid water, and rain rate. Dynamical analyses indicated that both variations of atmospheric boundary layer stability and sea level pressure are responsible for atmospheric anomalies over mesoscale eddies. To reveal further details about the mechanisms of atmospheric responses to mesoscale eddies, atmospheric manifestations over a pair of cold and warm eddies in the southwestern SCS were simulated. Eddy-induced heat flux anomalies lead to changes in atmospheric stability. Thus, anomalous turbulence kinetic energy and friction velocity arise over the eddy dipole, which reduce(enhance) the vertical momentum transport over the cold(warm) eddy, resulting in the decrease(increase) of sea surface wind. Diagnoses of the model's momentum balance suggested that wind speed anomalies directly over the eddy dipole are dominated by vertical mixing terms within the atmospheric boundary layer, while wind anomalies on the edges of eddies are produced by atmospheric pressure gradient forces and atmospheric horizontal advection terms.
基金supported by the National Basic Research Program ofChina (Grant No. 2004CB418300)the National Natural Science Foundation of China (Grant No. 40675042)
文摘Based on the NCEP/NCAR reanalysis data for the period of 1948-2004 and the monthly rainfall data at 160 stations in China from 1951 to 2004, the relationships among the land-ocean temperature anomaly difference in the mid-lower troposphere in spring (April-May), the mei-yu rainfall in the Yangtze River- Huaihe River basin, and the activities of the South China Sea summer monsoon (SCSSM) are analyzed by using correlation and composite analyses. Results show that a significant positive correlation exists between mei-yu rainfall and air temperature in the middle latitudes above the western Pacific, while a significant negative correlation is located to the southwest of the Baikal Lake. When the land-ocean thermal anomaly difference is stronger in spring, the western Pacific subtropical high (WPSH) will be weaker and retreat eastward in summer (June-July), and the SCSSM will be stronger and advance further north, resulting in deficient moisture along the mei-yu front and below-normal precipitation in the mid and lower reaches of the Yangtze River, and vice versa for the weaker difference case. The effects and relative importance of the land and ocean anomalous heating on monsoon variability is also compared. It is found that the land and ocean thermal anomalies are both closely related to the summer circulation and mei-yu rainfall and SCSSM intensity, whereas the land heating anomaly is more important than ocean heating in changing the land-ocean thermal contrast and hence the summer monsoon intensity.