A 〉1500–km–long northeast–southwest trending Neoproterozoic metamorphic belt in the South China Craton(SCC) consists of subduction mélange and extensional basin deposits. This belt is present under an uncon...A 〉1500–km–long northeast–southwest trending Neoproterozoic metamorphic belt in the South China Craton(SCC) consists of subduction mélange and extensional basin deposits. This belt is present under an unconformity of Devonian–Carboniferous sediments. Tectonic evolution of the Neoproterozoic rocks is crucial to determining the geology of the SCC and further influences the reconstruction of the Rodinia supercontinent. A subduction mélange unit enclosed ca.1000–850–Ma mafic blocks, which defined a Neoproterozoic ocean that existed within the SCC, is exposed at the bottom of the Jiangnan Orogen(JO) and experienced at least two phases deformation. Combined with new(detrital) zircon U–Pb ages from metasandstones, as well as igneous rocks within the metamorphic belt, we restrict the strongly deformed subduction mélange as younger than the minimum detrital age ca. 835 Ma and older than the ca. 815 Ma intruded granite. Unconformably overlying the subduction mélange and the intruded granite, an intra–continental rift basin developed 〈800 Ma that involved abundant mantle inputs, such as mafic dikes. This stratum only experienced one main phase deformation. According to our white mica ^40Ar/^(30)Ar data and previously documented thermochronology, both the Neoproterozoic mélange and younger strata were exhumed by a 490–400–Ma crustal–scale positive flower structure. This orogenic event probably induced the thick–skinned structures and was accompanied by crustal thickening, metamorphism and magmatism and led to the closure of the pre–existing rift basin. Integrating previously published data and our new results, we agree that the SCC was located on the periphery of the Rodinia supercontinent from the Neoproterozic until the Ordovician. Furthermore, we prefer that the convergence and dispersal of the SCC were primarily controlled by oceanic subduction forces that occurred within or periphery of the SCC.展开更多
In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China...In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.展开更多
The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which tr...The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which transect the inclined folds in the flank;away from the fault planes,both the homogenization temperatures of inclusions in gangue minerals and the intensity of antimony mineralization decrease.These characteristics strongly demonstrate that the faults are used as the conduit for the metal-bearing fluid in mineralization.The normal faults,striking the NE to NNE,are interpreted to be generated by the postmgenic extension in the time from Cretaceous to Paleogene.Crustal or lithospheric thinning, directly resulting from regional extension inevitably increase the geothermal gradient, Which is likely to cause large-scale convection of underground water that may leach out and transport valuablemetals such as Sb from source rocks.Focussed discharge along the fault zones contributes to the formation of the supergiant antimony deposit in Xikuangshan under the appropriate sedimentary barrier.展开更多
The Jingdezhen ductile shear zone is evolved from the Neoproterozoic Zhangyuan ophiolite melange belt in the eastern Jiangnan Orogen, South China. Comprehensive study of geometry, kinematics, quartz c-axis fabric, tem...The Jingdezhen ductile shear zone is evolved from the Neoproterozoic Zhangyuan ophiolite melange belt in the eastern Jiangnan Orogen, South China. Comprehensive study of geometry, kinematics, quartz c-axis fabric, temperature-pressure conditions and geochronology were conducted in this study. The Jingdezhen shear zone extends -180 km along the NE orientation with two groups of subvertical fo- liation and subhorizontal lineation. One group of foliation strikes NEN orientation whereas another one NEE orientation. Field investigation, microscopic observation and quartz c-axis fabric show that sinistral shearing along NEN-striking foliation occurred earlier than dextral shearing along NEE-striking foliation. Syn-tectonic staurolite porphyroblasts and deformation manner of feldspar imply that sinistral shearing occurred at 530-420 ℃ and 6-2 kbar. Deformation manner and c-axis fabric of quartz and pre-tectonic staurolite porphyroblasts indicate that dextral shearing took place at 420-300 ℃. LA-ICP-MS zircon U-Pb and mica ^40Ar/^39Ar dating indicate that the sinistral shearing occurred during Neoproterozoic oro- geny (830-800 Ma) whereas the dextral shearing at 447+12 Ma. The sinistral shearing resulted from the Neoproterozoic final assembly between the Yangtze and Cathaysia blocks. The dextral shearing was caused by Early Paleozoic orogen parallel extension and clockwise rotation.展开更多
The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not y...The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements(PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE(PPGE) relative to Ir-subgroup PGE(IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir(11–28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios(545–5 216) and high Cu/Zr ratios(0.4–5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios(8 913–107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE(Os, Ir and Ru) relative to PPGE(Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic CuNi-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.展开更多
基金financially supported by Post–doctoral Scientific Foundation of China(No.2016M601084)Basic research funds of the Chinese Academy of Geological Sciences(No.JYYWF20182103)+1 种基金Geological Survey of China(No.DD20160022–01)a grant from the Ministry of Land and Resources of China(No.201511022)
文摘A 〉1500–km–long northeast–southwest trending Neoproterozoic metamorphic belt in the South China Craton(SCC) consists of subduction mélange and extensional basin deposits. This belt is present under an unconformity of Devonian–Carboniferous sediments. Tectonic evolution of the Neoproterozoic rocks is crucial to determining the geology of the SCC and further influences the reconstruction of the Rodinia supercontinent. A subduction mélange unit enclosed ca.1000–850–Ma mafic blocks, which defined a Neoproterozoic ocean that existed within the SCC, is exposed at the bottom of the Jiangnan Orogen(JO) and experienced at least two phases deformation. Combined with new(detrital) zircon U–Pb ages from metasandstones, as well as igneous rocks within the metamorphic belt, we restrict the strongly deformed subduction mélange as younger than the minimum detrital age ca. 835 Ma and older than the ca. 815 Ma intruded granite. Unconformably overlying the subduction mélange and the intruded granite, an intra–continental rift basin developed 〈800 Ma that involved abundant mantle inputs, such as mafic dikes. This stratum only experienced one main phase deformation. According to our white mica ^40Ar/^(30)Ar data and previously documented thermochronology, both the Neoproterozoic mélange and younger strata were exhumed by a 490–400–Ma crustal–scale positive flower structure. This orogenic event probably induced the thick–skinned structures and was accompanied by crustal thickening, metamorphism and magmatism and led to the closure of the pre–existing rift basin. Integrating previously published data and our new results, we agree that the SCC was located on the periphery of the Rodinia supercontinent from the Neoproterozic until the Ordovician. Furthermore, we prefer that the convergence and dispersal of the SCC were primarily controlled by oceanic subduction forces that occurred within or periphery of the SCC.
基金supported by China Geological Survey(CGS) and IGMA 5000 (Grant No. 12120111200131)the ministry of Science and Technology (MST) (Grant No.,2011FY120100)
文摘In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Mesoand Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U- Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.
文摘The Xikuangshan antimony deposit in central Hunan, South China, is the largest antimony deposit ever known in the world. The ore bodies are strictly confined to the footwalls of mafor high-angle normal faults which transect the inclined folds in the flank;away from the fault planes,both the homogenization temperatures of inclusions in gangue minerals and the intensity of antimony mineralization decrease.These characteristics strongly demonstrate that the faults are used as the conduit for the metal-bearing fluid in mineralization.The normal faults,striking the NE to NNE,are interpreted to be generated by the postmgenic extension in the time from Cretaceous to Paleogene.Crustal or lithospheric thinning, directly resulting from regional extension inevitably increase the geothermal gradient, Which is likely to cause large-scale convection of underground water that may leach out and transport valuablemetals such as Sb from source rocks.Focussed discharge along the fault zones contributes to the formation of the supergiant antimony deposit in Xikuangshan under the appropriate sedimentary barrier.
基金supported by the National Natural Science Foundation of China (Nos. 41402174, 41472166)the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan)+1 种基金China Scholarship Council (No. 201406415007)the Natural Sciences and Engineering Research Council of Canada
文摘The Jingdezhen ductile shear zone is evolved from the Neoproterozoic Zhangyuan ophiolite melange belt in the eastern Jiangnan Orogen, South China. Comprehensive study of geometry, kinematics, quartz c-axis fabric, temperature-pressure conditions and geochronology were conducted in this study. The Jingdezhen shear zone extends -180 km along the NE orientation with two groups of subvertical fo- liation and subhorizontal lineation. One group of foliation strikes NEN orientation whereas another one NEE orientation. Field investigation, microscopic observation and quartz c-axis fabric show that sinistral shearing along NEN-striking foliation occurred earlier than dextral shearing along NEE-striking foliation. Syn-tectonic staurolite porphyroblasts and deformation manner of feldspar imply that sinistral shearing occurred at 530-420 ℃ and 6-2 kbar. Deformation manner and c-axis fabric of quartz and pre-tectonic staurolite porphyroblasts indicate that dextral shearing took place at 420-300 ℃. LA-ICP-MS zircon U-Pb and mica ^40Ar/^39Ar dating indicate that the sinistral shearing occurred during Neoproterozoic oro- geny (830-800 Ma) whereas the dextral shearing at 447+12 Ma. The sinistral shearing resulted from the Neoproterozoic final assembly between the Yangtze and Cathaysia blocks. The dextral shearing was caused by Early Paleozoic orogen parallel extension and clockwise rotation.
基金supported by the National Natural Science Foundation of China (No. 41572170)"Thousand Youth Talents Plan" grant to Wei WangMOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources (No. MSFGPMR11 and 01-1)
文摘The Fanjingshan mafic-ultramafic rocks in the west Jiangnan Orogen of South China are considered to be a potential target for mineral exploration. However, the petrogenesis and magma evolution of these rocks are not yet clearly constrained, let along their economic significance. The compositions of platinum group elements(PGE) in the Fanjingshan mafic-ultramafic rocks can provide particular insight into the generation and evolution of the mantle-derived magma and thus the potential of Cu-Ni-PGE sulphide mineralization. The Fanjingshan mafic-ultramafic rocks have relatively high Pd-subgroup PGE(PPGE) relative to Ir-subgroup PGE(IPGE) in the primitive mantle-normalized diagrams. Meanwhile, the Fanjingshan mafic-ultramafic rocks have low Pd/Ir(11–28) ratios, implying relatively low degree of partial melting in the mantle. Low Cu/Pd ratios(545–5 216) and high Cu/Zr ratios(0.4–5.8 with the majority greater than 1) of Fanjingshan ultramafic rocks indicate that the S-undersaturated parental magma with relatively high PGE was formed. Although the Fanjingshan mafic rocks have remarkably higher Cu/Pd ratios(8 913–107 016) likely resulting from sulphide segregation, the degree of sulphide removal is insignificant. Fractionation of olivine rather than chromite and platinum group minerals or alloys governed the fractionation of PGE and produced depletion of IPGE(Os, Ir and Ru) relative to PPGE(Rh, Pt and Pd), as supported by the positive correlation between Pd/Ir and V, Y and REE. Collectively, original S-undersaturated magma and insignificant crustal contamination during magma ascent and emplacement result in the separation of immiscible sulphide impossible and thus impede the formation of economic CuNi-PGE sulphide mineralization within the Fanjingshan mafic-ultramafic rocks.