The present paper gives an overview of the key project ' South China Sea Monsoon Experiment (SCSMEX)' operated by the Ministry of Science and Technology of China during the period of 1996-2001. The SCSMEX is a...The present paper gives an overview of the key project ' South China Sea Monsoon Experiment (SCSMEX)' operated by the Ministry of Science and Technology of China during the period of 1996-2001. The SCSMEX is a joint atmospheric and oceanic field experiment which aims to better understand the onset, maintenance, and variability of the summer monsoon over the South China Sea (SCS). It is a large-scale international effort with many participating countries and regions cooperatively involved in this experiment. With the field observation in May-August 1998, a large amount of meteorological and oceanic data was acquired, which provides excellent datasets for the study of the SCS monsoon and the East Asian monsoon and their interaction with the ocean. The preliminary research achievements are as follows. (1) The earliest onset of the Asian monsoon over the SCS and Indo-China Peninsula has been well documented. Prom the viewpoint of the synoptic process, its onset is closely related to the early rapid development of a twin cyclone to the east of Sri Lanka. The conceptual modei of the SCS monsoon onset in 1998 was put forward. The 50-year time series of the SCS monsoon onset date was also made. (2) Two major modes, namely the 30-60-day and 10-20-day oscillations were ascertained. The influences of the abnormal SCS monsoon on the precipitation over eastern China and its modes were identifled. A strong (weak) monsoon over the SCS usually leads to less (more) precipitation over the middle and lower reaches of the Yangtze River basin, and more (less) precipitation in North China. (3) During the monsoon onset over the SCS, a wide variety of organized mesoscale convective systems (MCSs) were observed by a Doppler radar array deployed over the northern SCS. The relationship between large-scale circulations and MCSs during the monsoon onset process in 1998 was clearly revealed. It was suggested that there is a kind of positive feedback mechanism between large-scale circulations and MCSs. (4) The SST over the SCS during the early period influences the timing of the monsoon onset date and the monsoon's intensity. During the monsoon onset, the ocean undergoes a process of energy release through air-sea interaction. During the break phase of the SCS monsoon, the ocean demonstrates the process of energy re-accumulation. Obvious differences in the air-sea turbulent flux exchange between the southern and northern parts of the SCS due to different characteristic features of the atmosphere and sea structure were observed in those regions. (5) The verification of impact of intensive observations on the predictive performance is made by the use of regional models. The air-sea coupled regional climate modei (CRCM) was also developed under the SCSMEX Project . The simulation of the oceanic circulation in 1998 produced with the modei was well compared with the observations.展开更多
By using the USA NCAR / NCEP reanalysis data, the characteristics of climatic elements and the temporal and spatial structures of precipitation in the strong and weak years of the SCS monsoon are analyzed, the mechani...By using the USA NCAR / NCEP reanalysis data, the characteristics of climatic elements and the temporal and spatial structures of precipitation in the strong and weak years of the SCS monsoon are analyzed, the mechanism of the interannual variation of the SCS monsoon is discussed. It is found that the climatic elements in SCS have great differences, and there are great differences in the spatial and temporal structures of the precipitation anomalies between the strong and weak monsoon years. The variation of climatic elements in the south of Indochina Peninsula in April is a good index of the strength of the SCS monsoon. There is a good connection between the SCS monsoon and the sea surface temperature. The SCS monsoon is weak in the EL Nino years, and strong in the La Nina years. The strength of the SCS monsoon depends on the local heating differences between the eastern continent of China and the western Pacific. It depends on the intensity and the position of the western Pacific Subtropical High. The western Pacific Subtropical High is weak and eastward in the strong monsoon years, and the case is reversed in the weak monsoon years.展开更多
The South China Sea warm pool interacts vigorously with the summer monsoon which is active in the region. However, there has not been a definition concerning the former warm pool which is as specific as that for the l...The South China Sea warm pool interacts vigorously with the summer monsoon which is active in the region. However, there has not been a definition concerning the former warm pool which is as specific as that for the latter. The seasonal and inter-annual variability of the South China Sea warm pool and its relations to the South China Sea monsoon onset were analyzed using Levitus and NCEP/NCAR OISST data. The results show that, the seasonal variability of the South China Sea warm pool is obvious, which is weak in winter, develops rapidly in spring, becomes strong and extensive in summer and early autumn, and quickly decays from mid-autumn. The South China Sea warm pool is 55 m in thickness in the strongest period and its axis is oriented from southwest to northeast with the main section locating along the western offshore steep slope of northern Kalimantan-Palawan Island. For the warm pools in the South China Sea, west Pacific and Indian Ocean, the oscillation, which is within the same large scale air-sea coupling system, is periodic around 5 years. There are additional oscillations of about 2.5 years and simultaneous inter-annual variations for the latter two warm pools. The intensity of the South China Sea warm pool varies by a lag of about 5 months as compared to the west Pacific one. The result also indicates that the inter-annual variation of the intensity index is closely related with the onset time of the South China Sea monsoon. When the former is persistently warmer (colder) in preceding winter and spring, the monsoon in the South China Sea usually sets in on a later (earlier) date in early summer. The relation is associated with the activity of the high pressure over the sea in early summer. An oceanic background is given for the prediction of the South China Sea summer monsoon, though the mechanism through which the warm pool and eventually the monsoon are affected remains unclear.展开更多
Results of the definition of South China Sea summer monsoon onset date and East Asian summermonsoon index in recent years are summarized in this paper. And more questions to be resolved are introducedlater.
The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information ...The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information about the initial field in simulation predictions, the Advanced Microwave Sounding Unit-B (AMSU-B) data from a NOAA satellite were introduced to improve the initial values. By directly using the 3-dimensional variational data assimilation system of GRAPES, two schemes for assimilation tests were designed. In the design, Test 1 (T1) assimilates both sounding and AMSU-B data, and Test 2 (T2) assimilates only the conventional sounding data, before applying the model in simulation forecasts. Comparative experiments showed that the model was very sensitive to initial fields and successful in reproducing the monsoon onset, allocation of high- and low-level wind fields during the pentad of onset, and the northward advancement of the monsoon and monsoon rain bands. The scheme, however, simulated rainfall and the location of the subtropical high with deviations from observations. The simulated location of the subtropical high was more westward and northward and the simulated rainfall for the South China Sea was larger and covered a broader area.展开更多
According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodyn...According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and sI抯 relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.展开更多
Based on the interannual variability of convection over the tropical western North Pacific (WNP), a region of 130°—160°E, 10°—20°N, a composite analysis is performed on the fields of surface temp...Based on the interannual variability of convection over the tropical western North Pacific (WNP), a region of 130°—160°E, 10°—20°N, a composite analysis is performed on the fields of surface temperature, outgoing longwave radiation and 850 hPa zonal wind. The composite results show that the weaker (stronger) WNP convection is related to the El Nino (La Nina)—pattern sea surface temperature (SST) anomalies in the preceding winter and in spring. A comparison with previous results indicates that a similar spatial and temporal distribution of SST anomalies is also associated with the onsets of both the WNP and South China Sea (SCS) monsoons. The composite results also show that the weaker (stronger) convection over the WNP corresponds to the easterly (westerly) anomalies that extend westward from the WNP into the Bay of Bengal. A numerical experiment by an atmospheric general circulation model shows a similar result. In addition, during weaker (stronger) convection summer, the convection over the WNP and lower-level zonal winds over the SCS exhibit a small (large) extent of seasonal evolution.展开更多
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area...Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.展开更多
This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A ...This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.展开更多
The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.Howeve...The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.However,the onset dates as determined by various indices can be very inconsistent.It not only limits the determination of onset dates but also misleads the assessment of prediction skills.In 2021,the onset time as identified by the circulation criteria was 20 May,which is 12 days earlier than that deduced by also considering the convection criteria.The present study mainly ascribes such circulation-convection inconsistency to the activities of tropical cyclones(TCs)modulated by the Madden-Julian Oscillation(MJO).The convection of TC“Yaas”(2021)acted as an upper-level diabatic heat source to the north of the SCS,facilitating the circulation transition.Afterward,TC“Choi-wan”(2021)over the western Pacific aided the westerlies to persist at lower levels while simultaneously suppressing moist convection over the SCS.Accurate predictions using the ECMWF S2S forecast system were obtained only after the MJO formation.The skillful prediction of the MJO during late spring may provide an opportunity to accurately predict the establishment of the SCSSM several weeks in advance.展开更多
The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of...The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM.展开更多
The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation...The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation and distribution of the atmospheric heat sources are important for the monsoon onset. The earlier onset of the SCS monsoon is the result of enduring atmospheric heating in the Indo–China Peninsula and South China areas. The atmospheric heating firstly appears in the Indo–China Peninsula area and the sensible heat is the major one. The 30–50 day periodic oscillation of atmospheric heat sources between the SCS area and the western Pacific warm pool has a reverse phase distribution before the middle of July and the low frequency oscillation of heat sources in SCS area has an obvious longitudinal propagation. The 30–50 day low frequency oscillation has vital modificatory effects on the summer monsoon evolution during 1998. Key words Apparent heat sources - Apparent moisture sinks - The South China Sea monsoon - Diagnostic Study Sponsored by the National Key Project of Fundamental Research “ SCSMEX” and the Research Fund for the Doctoral Program of Higher Education: “ Study of the Air-sea Interaction in the SCS Monsoon Region”.展开更多
With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and af...With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.展开更多
The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon p...The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.展开更多
Based on NCEP/NCAR daily reanalysis and the Tropical Rainfall Measuring Mission data, the back- ground atmospheric circulation and the characteristics of meteorological elements during the period of the Bay of Bengal ...Based on NCEP/NCAR daily reanalysis and the Tropical Rainfall Measuring Mission data, the back- ground atmospheric circulation and the characteristics of meteorological elements during the period of the Bay of Bengal monsoon (BOBM) and the South China Sea (SCS) monsoon (SCSM) in 2010 are studied. The impacts of the BOBM onset on the SCSM onset and the relationship between the two monsoons are also analyzed. The two main results are as follows: (l) The BOBM onset obvi- ously occurs earlier than the SCSM onset in 2010, which is a typical onset process of the Asian monsoon. During the BOBM's onset, northward jump, and eastward expansion, convective precipitation and southwest winds occurred over the SCS, which resulted in the onset of the SCSM. (2) The relationship among strong convection, heavy rainfall, and vertical circulation configuration is obtained during the monsoon onsets over the BOB and SCS, and it is concluded that the South Asian High plays an important role in this period.展开更多
Based on the ERA-40 and NCEP/NCAR reanalysis data,the NOAA Climate Prediction Center's merged analysis of precipitation(CMAP),and the fifth-generation PSU/NCAR Mesoscale Model version 3(MM5v3),we defined a monsoo...Based on the ERA-40 and NCEP/NCAR reanalysis data,the NOAA Climate Prediction Center's merged analysis of precipitation(CMAP),and the fifth-generation PSU/NCAR Mesoscale Model version 3(MM5v3),we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer(June-July) South China Sea(SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River(MLRYR) using both observational data analysis and numerical simulation methods.The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July.Corresponding to stronger(weaker) tropical monsoon and precipitation,the southwesterly winds are weaker(stronger) over the MLRYR,with less(more) local precipitation.The simulation results further exhibit that when changing the SCS monsoon intensity,there are significant variations of monsoon and precipitation over the MLRYR.The simulated anomalies generally consist with the observations,which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR.This impact might be supported by certain physical processes.Moreover,when the tropical summer monsoon is stronger,the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR,hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated.On the other hand,the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation,leading to the weakening of the monsoon flows and precipitation over the MLRYR.展开更多
Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue...Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.展开更多
Through analyzing the NCEP/NCAR reanalysis data, the satellite observational data and the ATLAS-2 mooring buoy observational data, it is shown that May 21 is the onset date of the South China Sea summer monsoon in 199...Through analyzing the NCEP/NCAR reanalysis data, the satellite observational data and the ATLAS-2 mooring buoy observational data, it is shown that May 21 is the onset date of the South China Sea summer monsoon in 1998. There were abrupt variations in the general circulation pattern at the lower troposphere and the upper troposphere, in upper jet stream location and in the convection and rainfall over the South China Sea region corresponding to the outbreak of the South China Sea summer monsoon. It is also indicated that there was rainfall in the southern China coastal region before onset of summer monsoon, but it resulted from the (cold) front activity and cannot be regarded as the sign of summer monsoon outbreak in the South China Sea. Key words Onset - South China Sea summer monsoon - General circulation pattern, Jet stream - Convection This work was supported by the State Key Project for Research—“ The South China Sea Monsoon Experiment”, CAS (KZ951-B1-408) and CNSF (49823002).展开更多
The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is dis...The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.展开更多
文摘The present paper gives an overview of the key project ' South China Sea Monsoon Experiment (SCSMEX)' operated by the Ministry of Science and Technology of China during the period of 1996-2001. The SCSMEX is a joint atmospheric and oceanic field experiment which aims to better understand the onset, maintenance, and variability of the summer monsoon over the South China Sea (SCS). It is a large-scale international effort with many participating countries and regions cooperatively involved in this experiment. With the field observation in May-August 1998, a large amount of meteorological and oceanic data was acquired, which provides excellent datasets for the study of the SCS monsoon and the East Asian monsoon and their interaction with the ocean. The preliminary research achievements are as follows. (1) The earliest onset of the Asian monsoon over the SCS and Indo-China Peninsula has been well documented. Prom the viewpoint of the synoptic process, its onset is closely related to the early rapid development of a twin cyclone to the east of Sri Lanka. The conceptual modei of the SCS monsoon onset in 1998 was put forward. The 50-year time series of the SCS monsoon onset date was also made. (2) Two major modes, namely the 30-60-day and 10-20-day oscillations were ascertained. The influences of the abnormal SCS monsoon on the precipitation over eastern China and its modes were identifled. A strong (weak) monsoon over the SCS usually leads to less (more) precipitation over the middle and lower reaches of the Yangtze River basin, and more (less) precipitation in North China. (3) During the monsoon onset over the SCS, a wide variety of organized mesoscale convective systems (MCSs) were observed by a Doppler radar array deployed over the northern SCS. The relationship between large-scale circulations and MCSs during the monsoon onset process in 1998 was clearly revealed. It was suggested that there is a kind of positive feedback mechanism between large-scale circulations and MCSs. (4) The SST over the SCS during the early period influences the timing of the monsoon onset date and the monsoon's intensity. During the monsoon onset, the ocean undergoes a process of energy release through air-sea interaction. During the break phase of the SCS monsoon, the ocean demonstrates the process of energy re-accumulation. Obvious differences in the air-sea turbulent flux exchange between the southern and northern parts of the SCS due to different characteristic features of the atmosphere and sea structure were observed in those regions. (5) The verification of impact of intensive observations on the predictive performance is made by the use of regional models. The air-sea coupled regional climate modei (CRCM) was also developed under the SCSMEX Project . The simulation of the oceanic circulation in 1998 produced with the modei was well compared with the observations.
文摘By using the USA NCAR / NCEP reanalysis data, the characteristics of climatic elements and the temporal and spatial structures of precipitation in the strong and weak years of the SCS monsoon are analyzed, the mechanism of the interannual variation of the SCS monsoon is discussed. It is found that the climatic elements in SCS have great differences, and there are great differences in the spatial and temporal structures of the precipitation anomalies between the strong and weak monsoon years. The variation of climatic elements in the south of Indochina Peninsula in April is a good index of the strength of the SCS monsoon. There is a good connection between the SCS monsoon and the sea surface temperature. The SCS monsoon is weak in the EL Nino years, and strong in the La Nina years. The strength of the SCS monsoon depends on the local heating differences between the eastern continent of China and the western Pacific. It depends on the intensity and the position of the western Pacific Subtropical High. The western Pacific Subtropical High is weak and eastward in the strong monsoon years, and the case is reversed in the weak monsoon years.
基金A comprehensive study on the activities of the South China Sea summer monsoon and its influence"- a major project of the Chines
文摘The South China Sea warm pool interacts vigorously with the summer monsoon which is active in the region. However, there has not been a definition concerning the former warm pool which is as specific as that for the latter. The seasonal and inter-annual variability of the South China Sea warm pool and its relations to the South China Sea monsoon onset were analyzed using Levitus and NCEP/NCAR OISST data. The results show that, the seasonal variability of the South China Sea warm pool is obvious, which is weak in winter, develops rapidly in spring, becomes strong and extensive in summer and early autumn, and quickly decays from mid-autumn. The South China Sea warm pool is 55 m in thickness in the strongest period and its axis is oriented from southwest to northeast with the main section locating along the western offshore steep slope of northern Kalimantan-Palawan Island. For the warm pools in the South China Sea, west Pacific and Indian Ocean, the oscillation, which is within the same large scale air-sea coupling system, is periodic around 5 years. There are additional oscillations of about 2.5 years and simultaneous inter-annual variations for the latter two warm pools. The intensity of the South China Sea warm pool varies by a lag of about 5 months as compared to the west Pacific one. The result also indicates that the inter-annual variation of the intensity index is closely related with the onset time of the South China Sea monsoon. When the former is persistently warmer (colder) in preceding winter and spring, the monsoon in the South China Sea usually sets in on a later (earlier) date in early summer. The relation is associated with the activity of the high pressure over the sea in early summer. An oceanic background is given for the prediction of the South China Sea summer monsoon, though the mechanism through which the warm pool and eventually the monsoon are affected remains unclear.
基金Natural Science Foundation of China (grant No.40233027)Natural Science Foundation ofChina (Project 90211010)"Research on the monitoring and service of South China Sea monsoons", ResearchFund for Tropical Marine Meteorology
文摘Results of the definition of South China Sea summer monsoon onset date and East Asian summermonsoon index in recent years are summarized in this paper. And more questions to be resolved are introducedlater.
基金National 863 Special Project (2006AA01A123)Research on Interpretation Techniques for High-Resolution Numerical Prediction of Hunan ProvinceResearch on Rainstorm Forecast System with GRAPES and Its Application and Accessment in Hunan and Key Project of Science in Hunan (2008FJ1006)
文摘The Global and Regional Assimilation and Prediction System (GRAPES), a limited-area regional model, was used to simulate the onset of South China Sea summer monsoon. In view of the relatively insufficient information about the initial field in simulation predictions, the Advanced Microwave Sounding Unit-B (AMSU-B) data from a NOAA satellite were introduced to improve the initial values. By directly using the 3-dimensional variational data assimilation system of GRAPES, two schemes for assimilation tests were designed. In the design, Test 1 (T1) assimilates both sounding and AMSU-B data, and Test 2 (T2) assimilates only the conventional sounding data, before applying the model in simulation forecasts. Comparative experiments showed that the model was very sensitive to initial fields and successful in reproducing the monsoon onset, allocation of high- and low-level wind fields during the pentad of onset, and the northward advancement of the monsoon and monsoon rain bands. The scheme, however, simulated rainfall and the location of the subtropical high with deviations from observations. The simulated location of the subtropical high was more westward and northward and the simulated rainfall for the South China Sea was larger and covered a broader area.
基金 Research on the Formation Mechanism and Prediction Theory of Severe Climate Disasters in China (G1998040900(I))
文摘According to the basic characteristics of the activities of summer monsoon in the South China Sea, a standardized index, sI, has been designed that integrates a dynamic factor (southwesterly component) and a thermodynamic factor (OLR) for the indication of summer monsoon in the South China Sea. With the index determined for individual months of June, July and August and the entire summertime from 1975 to 1999, specific months and years are indicated that are either strong or weak in monsoon intensity. The variation is studied for the patterns and sI抯 relationship is revealed with the onset of summer monsoon and the precipitation in Guangdong province and China. The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsoon over the past 25 years. When it has an early (late) onset, the summer monsoon is usually strong (weak). In the strong (weak) monsoon years, precipitation tends to be more (less) in the first raining season of the year but normal or less (normal) in the second, in the province, but it would be more (less) in northeastern China and most parts of the northern China and south of the lower reaches of the Changjiang River and less (more) in the middle and lower reaches of the river, western part of northern China and western China.
基金This study was supported by the " National Key Program for Developing Basic Sciences" G1998040900 Part 1 and the National Natura
文摘Based on the interannual variability of convection over the tropical western North Pacific (WNP), a region of 130°—160°E, 10°—20°N, a composite analysis is performed on the fields of surface temperature, outgoing longwave radiation and 850 hPa zonal wind. The composite results show that the weaker (stronger) WNP convection is related to the El Nino (La Nina)—pattern sea surface temperature (SST) anomalies in the preceding winter and in spring. A comparison with previous results indicates that a similar spatial and temporal distribution of SST anomalies is also associated with the onsets of both the WNP and South China Sea (SCS) monsoons. The composite results also show that the weaker (stronger) convection over the WNP corresponds to the easterly (westerly) anomalies that extend westward from the WNP into the Bay of Bengal. A numerical experiment by an atmospheric general circulation model shows a similar result. In addition, during weaker (stronger) convection summer, the convection over the WNP and lower-level zonal winds over the SCS exhibit a small (large) extent of seasonal evolution.
基金supported by a Guangdong Major Project of Basic and Applied Basic Research (Grant No.2020B0301030004)the Collaborative Observation and Multisource Real-time Data Fusion and Analysis Technology & Innovation team (Grant No.GRMCTD202103)the Foshan Special Project on Science and Technology in Social Field (Grant No.2120001008761)。
文摘Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation.
基金supported by the National Natural Science Foundation of China(Grant No.42275025).
文摘This study identifies break events of the South China Sea(SCS)summer monsoon(SCSSM)based on 42 years of data from 1979 to 2020,and investigates their statistical characteristics and associated atmospheric anomalies.A total of 214 break events are identified by examining the convection evolution during each monsoon season.It is found that most events occur between June and September and show a roughly even distribution.Short-lived events(3–7 days)are more frequent,accounting for about two thirds of total events,with the residual one third for long-lived events(8–24 days).The SCSSM break is featured by drastic variations in various atmospheric variables.Particularly,the convection and precipitation change from anomalous enhancement in adjoining periods to a substantial suppression during the break,with the differences being more than 60 W m−2 for outgoing longwave radiation(OLR)and 10 mm d−1 for precipitation.This convection/precipitation suppression is accompanied by an anomalous anticyclone in the lower troposphere,corresponding to a remarkable westward retreat of the monsoon trough from the Philippine Sea to the Indochina Peninsula,which reduces the transportation of water vapor into the SCS.Besides,the pseudo-equivalent potential temperature()declines sharply,mainly attributable to the local specific humidity reduction caused by downward dry advection.Furthermore,it is found that the suppressed convection and anomalous anticyclone responsible for the monsoon break form near the equatorial western Pacific and then propagate northwestward to the SCS.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 42005011, 41830969)the Basic Scientific Research and Operation Foundation of CAMS (Grant Nos. 2021Z004)supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘The South China Sea Summer Monsoon(SCSSM)onset is characterized by an apparent seasonal conversion of circulation and convection.Accordingly,various indices have been introduced to identify the SCSSM onset date.However,the onset dates as determined by various indices can be very inconsistent.It not only limits the determination of onset dates but also misleads the assessment of prediction skills.In 2021,the onset time as identified by the circulation criteria was 20 May,which is 12 days earlier than that deduced by also considering the convection criteria.The present study mainly ascribes such circulation-convection inconsistency to the activities of tropical cyclones(TCs)modulated by the Madden-Julian Oscillation(MJO).The convection of TC“Yaas”(2021)acted as an upper-level diabatic heat source to the north of the SCS,facilitating the circulation transition.Afterward,TC“Choi-wan”(2021)over the western Pacific aided the westerlies to persist at lower levels while simultaneously suppressing moist convection over the SCS.Accurate predictions using the ECMWF S2S forecast system were obtained only after the MJO formation.The skillful prediction of the MJO during late spring may provide an opportunity to accurately predict the establishment of the SCSSM several weeks in advance.
基金Program of National Science Foundation of China(42175018,42088101)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)。
文摘The interdecadal change in the interannual variability of the South China Sea summer monsoon(SCSSM)intensity and its mechanism are investigated in this study.The interannual variability of the low-level circulation of the SCSSM has experienced a significant interdecadal enhancement around the end of the 1980s,which may be attributed to the interdecadal changes in the evolution of the tropical Indo-Pacific sea surface temperature(SST)anomalies and their impacts on the SCSSM.From 1961 to 1989,the low-level circulation over the South China Sea is primarily affected by the SST anomalies in the tropical Indian Ocean via the mechanism of Kelvin-wave-induced Ekman divergence.While in 1990 to 2020,the impacts of the summer SST anomalies in the Maritime Continent and the equatorial central to eastern Pacific on the SCSSM are enhanced,via anomalous meridional circulation and Mastuno-Gill type Rossby wave atmospheric response,respectively.The above interdecadal changes are closely associated with the interdecadal changes in the evolution of El Niño–Southern Oscillation(ENSO)events.The interdecadal variation of the summer SST anomalies in the developing and decaying phases of ENSO events enhances the influence of the tropical Indo-Pacific SST on the SCSSM,resulting in the interdecadal change in the interannual variability of the SCSSM.
基金National Key Project of Fundamental Research u SCSMEX" the Research Fund for the Doctoral Program of Higher Education:" Stud
文摘The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation and distribution of the atmospheric heat sources are important for the monsoon onset. The earlier onset of the SCS monsoon is the result of enduring atmospheric heating in the Indo–China Peninsula and South China areas. The atmospheric heating firstly appears in the Indo–China Peninsula area and the sensible heat is the major one. The 30–50 day periodic oscillation of atmospheric heat sources between the SCS area and the western Pacific warm pool has a reverse phase distribution before the middle of July and the low frequency oscillation of heat sources in SCS area has an obvious longitudinal propagation. The 30–50 day low frequency oscillation has vital modificatory effects on the summer monsoon evolution during 1998. Key words Apparent heat sources - Apparent moisture sinks - The South China Sea monsoon - Diagnostic Study Sponsored by the National Key Project of Fundamental Research “ SCSMEX” and the Research Fund for the Doctoral Program of Higher Education: “ Study of the Air-sea Interaction in the SCS Monsoon Region”.
基金National Natural Science Foundation of China under contract No. 40075003The Prior Study of State Key Project for Basic Research "East Asian Monsoon Experiment".
文摘With the data observed from the Second SCS Air-Sea Flux Experiment on the Xisha air-sea flux research tower, the radiation budget, latent, sensible heat fluxes and net oceanic heat budgets were caculated before and after summer monsoon onset. It is discovered that, after summer monsoon onset, there are considerable changes in air-sea fluxes, especially in latent heat fluxes and net oceanic heat budget. Furthermore, the analyzed results of five synoptic stages are compared. And the characteristics of the flux transfer during different stages around onset of South China Sea monsoon are discussed. The flux change shows that there is an oceanic heat accumulating process during the pre-onset and the break period, as same as oceanic heat losing process during the onset period. Moreover, latent fluxes, the water vapor moving to the continent, even the rainfall appearance in Chinese Mainland also can be influenced by southwester. Comparing Xisha fluxes with those obtained from the Indian Ocean and the western Pacific Ocean, their differences may be observed. It is the reason why SSTs can keep stable over the South China Sea while they decrease quickly over the Arabian Sea and the Bay of Bengal after monsoon onset.
基金Supported by the National Key Program: SCSMEX under Grant 98-monsoon-7-3
文摘The SCSMEX is a joint atmospheric and oceanic experiment by international efforts, aiming at studying the onset, maintenance, and variability of the South China Sea (SCS) summer monsoon, thus improving the monsoon prediction in Southeast and East Asian regions. The field experiment carried out in May-August 1998 was fully successful, with a large amount of meteorological and oceanographic data acquired that have been used in four dimensional data assimilations by several countries, in order to improve their numerical simulations and prediction. These datasets are also widely used in the follow-up SCS and East Asian monsoon study. The present paper has summarized the main research results obtained by Chinese meteorologists which cover six aspects: (1) onset processes and mechanism of the SCS summer monsoon; (2) development of convection and mesoscale convective systems (MCSs) during the onset phase and their interaction with large-scale circulation; (3) low-frequency oscillation and teleconnection effect; (4) measurements of surface fluxes over the SCS and their relationship with the monsoon activity; (5) oceanic thermodynamic structures, circulation, and mesoscale eddies in the SCS during the summer monsoon and their relationship with ENSO events; and (6) numerical simulations of the SCS and East Asian monsoon.
基金supported by the National Basic Research Program of China(973 Program,No. 2010CB950300)the National Natural Science Foundation of China(Nos.41149908 & 41049903)
文摘Based on NCEP/NCAR daily reanalysis and the Tropical Rainfall Measuring Mission data, the back- ground atmospheric circulation and the characteristics of meteorological elements during the period of the Bay of Bengal monsoon (BOBM) and the South China Sea (SCS) monsoon (SCSM) in 2010 are studied. The impacts of the BOBM onset on the SCSM onset and the relationship between the two monsoons are also analyzed. The two main results are as follows: (l) The BOBM onset obvi- ously occurs earlier than the SCSM onset in 2010, which is a typical onset process of the Asian monsoon. During the BOBM's onset, northward jump, and eastward expansion, convective precipitation and southwest winds occurred over the SCS, which resulted in the onset of the SCSM. (2) The relationship among strong convection, heavy rainfall, and vertical circulation configuration is obtained during the monsoon onsets over the BOB and SCS, and it is concluded that the South Asian High plays an important role in this period.
基金Supported by the National Natural Science Foundation of China (40921003)National Basic Research and Development(973) Program of China (2009CB421404)
文摘Based on the ERA-40 and NCEP/NCAR reanalysis data,the NOAA Climate Prediction Center's merged analysis of precipitation(CMAP),and the fifth-generation PSU/NCAR Mesoscale Model version 3(MM5v3),we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer(June-July) South China Sea(SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River(MLRYR) using both observational data analysis and numerical simulation methods.The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July.Corresponding to stronger(weaker) tropical monsoon and precipitation,the southwesterly winds are weaker(stronger) over the MLRYR,with less(more) local precipitation.The simulation results further exhibit that when changing the SCS monsoon intensity,there are significant variations of monsoon and precipitation over the MLRYR.The simulated anomalies generally consist with the observations,which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR.This impact might be supported by certain physical processes.Moreover,when the tropical summer monsoon is stronger,the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR,hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated.On the other hand,the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation,leading to the weakening of the monsoon flows and precipitation over the MLRYR.
基金the National Natural Science Foundation of China grant No.40575026 "National Key ProgTamme for Developing Basic Science" Projects 2004CB418303, 2006CB403600.
文摘Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.
基金the State Key Project for Research-u The South China Sea MonsoonExperiment", !CAS (KZ95 1-B I-408) and CNSF (49823002).
文摘Through analyzing the NCEP/NCAR reanalysis data, the satellite observational data and the ATLAS-2 mooring buoy observational data, it is shown that May 21 is the onset date of the South China Sea summer monsoon in 1998. There were abrupt variations in the general circulation pattern at the lower troposphere and the upper troposphere, in upper jet stream location and in the convection and rainfall over the South China Sea region corresponding to the outbreak of the South China Sea summer monsoon. It is also indicated that there was rainfall in the southern China coastal region before onset of summer monsoon, but it resulted from the (cold) front activity and cannot be regarded as the sign of summer monsoon outbreak in the South China Sea. Key words Onset - South China Sea summer monsoon - General circulation pattern, Jet stream - Convection This work was supported by the State Key Project for Research—“ The South China Sea Monsoon Experiment”, CAS (KZ951-B1-408) and CNSF (49823002).
基金This study was supported by the project of the National Natural Science Foundation of China"Response of inter-decadal variability of South China Sea summer monsoon to the whole globe variability”under contract number 9021l010“Interannual to interdecadal variability in circulation in the tropical Pa-cific Ocean”under contract number 40136010.
文摘The annual, interannual and inter-decadal variability of convection intensity of South China Sea (SCS) summer monsoon and air-sea temperature difference in the tropical ocean is analyzed, and their relationship is discussed using two data sets of 48-a SODA (simple ocean data assimilation) and NCEP/NCAR. Analyses show that in wintertime Indian Ocean (WIO), springtime central tropical Pacific (SCTP) and summertime South China Sea-West Pacific (SSCSWP), air-sea temperature difference is significantly associated with the convection intensity of South China Sea summer monsoon. Correlation of the inter-decadal time scale (above 10 a) is higher and more stable. There is inter-decadal variability of correlation in scales less than 10 a and it is related with the air-sea temperature difference itself for corresponding waters. The inter-decadal variability of the convection intensity during the South China Sea summer monsoon is closely related to the inter-decadal variability of the general circulation of the atmosphere. Since the late period of the 1970s, in the lower troposphere, the cross-equatorial flow from the Southern Hemisphere has intensified. At the upper troposphere layer, the South Asian high and cross-equatorial flow from the Northern Hemisphere has intensified at the same time. Then the monsoon cell has also strengthened and resulted in the reinforcing of the convection of South China Sea summer monsoon.