To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were sele...To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were selected,on which the measurements of the shear wave speed at 0.5-2.0 kHz and related physical properties were performed.Results reveal that the shear wave speed of sediments increases as the frequency increases,and the dispersion enhanced in the sediments in the order of silty clay,clayey silt,sandy silt,silty sand,and clayey sand,at a linear change rate of 0.727,0.787,3.32,4.893,and 6.967 m s−1 kHz−1,respectively.Through regression analysis,linear and logarithmic regression equations for the correlation between shear wave speed and frequency were established for each sediment type and the determination coefficients of regression equations indicate that the correlation is closer to a logarithmic relationship.The Grain-Shearing(GS)and Biot-Stoll models were used to calculate the shear wave speed dispersion of the five sediment types,and the comparison between theoretical prediction and measured results of shear wave speeds shows that the GS model can more accurately describe the shear wave speed dispersion characteristics of these sediments in the frequency band of 0.5-2.0 kHz.In the same band,the predictions obtained by using the Biot-Stoll model are significantly different from the measured data.展开更多
The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-b...The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.展开更多
Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such...Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such as cost and operability,it is not feasible to assess the physical-mechanical properties of sediments covering the entire region by borehole sampling.In this study,the correlation between near seafloor seismic amplitude and the mean shear strength of shallow sediments was explored using seismic and core testing data from the northern continental slope area of the South China Sea.Results showed that the mean water content of sediments in the layer up to 12 m below the seafloor(mbsf)gradually increased with increasing water depth,and the mean shear strength tended to decrease rapidly near the 1000 m depth contour.The near seafloor seismic amplitude could reflect the mean shear strength of sediments in the 12 mbsf layer under seismic frequency of 65 Hz and wave velocity of 1600 m/s.When the mean shear strength was greater than 10 kPa or the water depth was less than 1000 m,there was a significant linear positive correlation between mean shear strength and near seafloor seismic amplitude.Otherwise,there was a significant linear negative correlation between mean shear strength and near seafloor seismic amplitude.On the basis of these correlations,the pattern of shear strength was estimated from near seafloor seismic amplitude and mapped.The mean shear strength of sediments above 12 mbsf gradually decreased with increasing water depth in the continental slope area,whereas little change occurred in the continental shelf and the end of the canyon.Within the canyon area,the mean shear strength of sediments was characterized by larger values in both sides of the canyon walls and smaller values in the canyon bottom,which was consistent with the infinite slope stability theory.The study provides a method for using near seafloor seismic amplitude data to guide sediment sampling design,and presents a continuous dataset of sediment strength for the simulation of regional sediment stability.展开更多
For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and se...For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.展开更多
Three-hundred and thirty-one sediment cores,including six sediment types(clayey-and sandy-silt,silty-and sandy-clay,clayey-and silty-sand)were collected from the shallow and semi-deep seas of the South China Sea,and t...Three-hundred and thirty-one sediment cores,including six sediment types(clayey-and sandy-silt,silty-and sandy-clay,clayey-and silty-sand)were collected from the shallow and semi-deep seas of the South China Sea,and the P-wave velocities and physical properties of core sediments were measured under standard laboratory conditions.To eliminate the influence of environ-mental factors,the empirical sound speed ratio equations were established.Compared with several equations from literature,the po-rosity and wet bulk density empirical equations established in this paper agree well with Richardson and Briggs(2004)’s in-situ equations,which implies that our empirical equations can be used in the similar region of world’s oceans under certain conditions and will be useful in areas lacking first-hand P-wave speed data.However,the mean grain size equations established in this study,similar to the previous studies,have low accuracy,which may be due to the different particle arrangements and degrees of compac-tion in sediments.The results also show that for different sediment types,the equation based on all sediment data is in good agree-ment with the measured data in the study area,as there are both siliciclastic and carbonate sediments on the studied seabed.It is sug-gested that appropriate empirical equations should be selected according to sediment types and sedimentary environment in future works,and the empirical equation of porosity or the two-parameter equation of porosity and grain size should be preferred.展开更多
Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have bee...Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.展开更多
On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of c...On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of carbonate content with limited well measarements as a control. The method was applied to the slope area of the northern South China Sea near ODP Sites 1146 and 1148, and the results are satisfaetory. Before inversion calculation, a stepwise regression method was applied to obtain six properties related most closely to the carbonate content variations among the various properties on the seismic profiles across or near the wells. These include the average frequency, the integrated absolute amplitude, the dominant frequency, the reflection time, the derivative instantaneous amplitude, and the instantaneous frequency. The results, with carbonate content errors of mostly ±5 % relative to those measured from sediment samples, show a relatively accurate picture of carbonate distribution along the slope profile. This method pioneers a new quantitative model to acquire carbonate content variations directly from high-resolution seismic data. It will provide a new approach toward obtaining substitutive high-resolution sediment data for earth system studies related to basin evolution, especially in discussing the coupling between regional sedimentation and climate change.展开更多
The seafloor around carbonate platforms is largely shaped and modified by downslope processes.However,the role of alongslope processes,including bottom currents,on the morphological development of carbonate platforms ...The seafloor around carbonate platforms is largely shaped and modified by downslope processes.However,the role of alongslope processes,including bottom currents,on the morphological development of carbonate platforms remains poorly understood.Here,we use high-resolution multibeam bathymetric data and two-dimensional seismic profiles to investigate the detailed sea-floor morphology around the Zhongjianbei carbonate platform(ZCP)in the northwest South China Sea.A series of depositional bodies and erosional channels are identified to the south of the ZCP and are interpreted as contourite drifts and channels resulted from the interaction between bottom currents and bathymetric features.In addition,active fluid seepages have led to the formation of widespread pockmarks on the seafloor.Importantly,the contourite channels and widespread pockmarks also show a close relationship in their distribution.We propose that the contourite channels around the ZCP are evolved from the coalescence of pockmarks under the persistent erosion of bottom currents.Based on the morphological analysis,we reconstruct the past bottom-current pathways around the ZCP that are parallel to the platform slopes and heading to the south.This study provides new insights into the formation of complex bathymetry and helps understanding how bottom currents and active fluid seepages can influence the morphological development around carbonate platforms.展开更多
Using deep convolutional neural networks as primary learners and a deep neural network as meta-learner, source ranging is solved as a regression problem with the ensemble learning method. Simulated acoustic data from ...Using deep convolutional neural networks as primary learners and a deep neural network as meta-learner, source ranging is solved as a regression problem with the ensemble learning method. Simulated acoustic data from the acoustic propagation model are used as the training data. Real data from an experiment in the South China Sea are used as the test data to demonstrate the performance. The results indicate that in the direct zone of deep water, signals received by a very deep receiver can be used to estimate the range of underwater sound source.Within 30 km, the mean absolute error of the range predictions is 1.0 km and the mean absolute percentage error is 7.9%.展开更多
On the basis of the summary of basic characteristics of propagation, the dynamic model of the tectonic evolution in the South-western Subbasin (SWSB), South China Sea (SCS), has been established through high resolutio...On the basis of the summary of basic characteristics of propagation, the dynamic model of the tectonic evolution in the South-western Subbasin (SWSB), South China Sea (SCS), has been established through high resolution multi-beam swatch bathymetry and multi-channel seismic profiles, combined with magnetic anomaly analysis. Spreading propagates from NE to SW and shows a transition from steady seafloor spreading, to initial seafloor spreading, and to continental rifting in the southwest end. The spreading in SWSB (SCS) is tectonic dominated, with a series of phenomena of inhomogeneous tectonics and sedimentation.展开更多
The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal s...The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal seafloor observatory,located between 30°31′44″N,122°15′12″E and 30°31′34″N,122°14′40″E,is constructed near the Xiaoqushan Island outside the Hangzhou Bay on the inner continental shelf of the East China Sea.The observatory is connected by a submarine optical fiber composite power cable that is more than one kilometer long and consists of a special junction box that transmits power and communication signals to different instruments.The special junction box has a variety of waterproof plugs and connects to three different instruments installed in a trawl preventer.The submarine optical fiber composite power cable is landed on the platform by The East China Sea Branch,State Oceanic Administration and the power is continuously supplied by the solar panels and solar battery on the top of the platform.The real time data are directly sent through the cable to the platform and are transmitted by CDMA wireless to the receiver at the State Key Laboratory of Marine Geology of Tongji University.Measurements at the observatory have been taken since April 20,2009 after installation and the results have been interpreted.The characteristics of the near bottom boundary are constrained by a sediment suspension model using portion of the observed data.In particular,discussion is provided on the sea surface height anomaly at Xiaoqushan Island influenced by the tsunami driven by the 2010 Earthquake in Chile.The successful establishment of the coastal seafloor observatory is the first step toward future development of seafloor observation systems in China.It not only accumulates experiences in technology and engineering,but also paves the way for performing important oceanic research using the long term continuous observation platform.展开更多
Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs...Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs.The lack of data coverage limits effective seismic imaging of deep mantle structures beneath the oceans,which cover 70%of the Earth’s surface.The newly developed Mobile Earthquake Recorder in Marine Areas by Independent Drivers(MERMAID)can drift with ocean currents at a specified depth while recording seismic signals.The Southern University of Science and Technology(SUSTech)launched 10 MERMAIDs in the South China Sea(SCS)in May 2021 that formed the South China Sea Floating Seismic Network(SCS-FSN).We analyzed the one-year-long records of the SCS-FSN,identifying 372 cataloged earthquakes and acquiring 1,015 high-quality travel time data.By analyzing the records of earthquakes with magnitudes above 7.0 and conducting synthetic waveform calculation,we found that,in addition to the epicentral distance and earthquake magnitude,the earthquake identification ability of the network is also affected by the focal mechanism,sea condition,seafloor relief,and MERMAID working state.Although the recognition rate of the SCS-FSN is only 16%for earthquakes with magnitudes above 5.5 and epicentral distances less than 90°,this network is expected to collect more than 5,000 high-quality travel time data during its five-year battery life.These new data will significantly improve the seismic data coverage,compensating for the lack of long-term continuous seismic network observations in the SCS.Most importantly,with this experiment,we are confident that setting up well-designed floating seismic networks in the world’s three oceans could solve the world-class problem of the lack of effective seismic data coverage beneath ocean regions.展开更多
Rapid developments of deep-sea researches in China over the past 20 years have promoted the South China Sea(SCS) into the international deep-sea frontiers. The 'three deep technologies', namely scientific dril...Rapid developments of deep-sea researches in China over the past 20 years have promoted the South China Sea(SCS) into the international deep-sea frontiers. The 'three deep technologies', namely scientific drilling, long-term seafloor observation and deep submersible vehicles implemented successively in SCS studies helped to achieve a number of scientific breakthroughs. Over the 20 years, five international ocean drilling expeditions to the SCS recovered nearly 10 km of sediment cores from sites at 3–4 km water depths, and drilling into the magmatic basement at 6 sites shed light on the genesis of the SCS basin. Coupled with other deep-sea short core sediments from the SCS, these records demonstrate evidence that water and carbon cycling in the low latitude regions can directly respond to the orbital forcing, and subsequently nurture a new concept of lowlatitude forcing of climate changes, which challenges the classical wisdom of the overwhelming role played by the Arctic icesheet in climate changes. The exploration in the continent-ocean transition zone also reveals a number of specific features that characterize the SCS as a marginal basin formed at the subduction zone in the Western Pacific. The features include active magmatism and rapid rupture of lithosphere through the basin formation process, and imply that 'the SCS is not a mini-Atlantic'as they can be distinguished as 'plate-edge rifting' and 'inner-plate rifting' respectively, thus challenging the universality of the Atlantic model for passive margins. Many more discoveries can be assembled from long-term mooring observations and deep diving cruises in the deep SCS, such as the cyclonic nature of the deep-water circulation, deep-water sediment transport by contour currents and turbidites, manganese nodules, extinct hydrothermal vents, and cold-water coral forests. In addition,prominent progress achieved in microbiology and biogeochemistry includes the microbial carbon pump and the coupling of carbon and nitrogen cycles. Clearly, most achievements of the deep-sea explorations in the SCS over the last 20 years have always been of international scale and impact. However, the contributions from Chinese scientists are most prominent, particularly with the research activities undertaken from the major program 'Deep Sea Processes and Evolution of the South China Sea(2011–2018)' supported by the National Natural Science Foundation of China.展开更多
The Zhongyebei (中业北) basin (ZYBB) is an NE-striking, narrow and small sedimentary basin superimposing the southern 1/2 segment of the proposed spreading axes of the SW subbasin of the South China Sea (SCS). M...The Zhongyebei (中业北) basin (ZYBB) is an NE-striking, narrow and small sedimentary basin superimposing the southern 1/2 segment of the proposed spreading axes of the SW subbasin of the South China Sea (SCS). More than 4 500 m strata were identified in the Zhongyebei basin, including the Paleogene lower structure layer and the Neogene upper structure layer. The SW subbasin of the South China Sea has been regarded as an oceanic basin opened by seafloor spreading, as evidenced by the flat and deep (〉 4 000 m mostly) seafloor with linear magnetic anomalies, and by the shallow Moho depth of 〈 12 km as estimated from gravity modeling. The classic model of seafloor spreading predicts that sediments on the oceanic crust are younger and thinner towards the spreading axes. But in the southwestern segment of the SW subbasin, contradictions appear. Firstly, the thick sedimentation in the ZYBB is along the proposed spreading axes. Secondly, the sediments are thinner (500-1 500 m) and younger away from the proposed spreading axes. Thirdly, geological elements of the two sides of spreading axes develop asymmetrically in the southwestern SW subbasin. Two models, the early opening model and the limited modeling model, are suggested for resolving this paradox. The former suggests that the opening of the SW subbasin was in Late Eocene and earlier than the oldest sediment in the ZYBB. The latter proposes that the opening of the SW subbasin was limited to its northeastern portion, and did not extend to the southwest portion. The ZYBB is a rift basin survived from the spreading but subjected to severe syn-spreading magmatic disturbance. The SW subbasin and the ZYBB of the SCS provide a unique opportunity for studying the structural evolution and dynamic mechanism at the tip of a propagating seafloor spreading. Both models have unresolved questions, and further studies are needed.展开更多
Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the ...Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.展开更多
基金supported by the Basic Scientific Fund for National Public Research Institutes of China(No.GY0220Q09)the National Natural Science Foundation of China(Nos.41676055,41527809,42176191,and 41330965)+1 种基金the Opening Fund of Qingdao National Laboratory for Marine Science and Technology(No.QNLM2016ORP0209)the Taishan Scholar Pro-ject Funding(No.tspd20161007).
文摘To accurately characterize the shear wave speed dispersion of seafloor sediments in the northern South China Sea,five types of sediments including silty clay,clayey silt,sandy silt,silty sand,and clayey sand were selected,on which the measurements of the shear wave speed at 0.5-2.0 kHz and related physical properties were performed.Results reveal that the shear wave speed of sediments increases as the frequency increases,and the dispersion enhanced in the sediments in the order of silty clay,clayey silt,sandy silt,silty sand,and clayey sand,at a linear change rate of 0.727,0.787,3.32,4.893,and 6.967 m s−1 kHz−1,respectively.Through regression analysis,linear and logarithmic regression equations for the correlation between shear wave speed and frequency were established for each sediment type and the determination coefficients of regression equations indicate that the correlation is closer to a logarithmic relationship.The Grain-Shearing(GS)and Biot-Stoll models were used to calculate the shear wave speed dispersion of the five sediment types,and the comparison between theoretical prediction and measured results of shear wave speeds shows that the GS model can more accurately describe the shear wave speed dispersion characteristics of these sediments in the frequency band of 0.5-2.0 kHz.In the same band,the predictions obtained by using the Biot-Stoll model are significantly different from the measured data.
基金Supported by the Guangdong Special Support Key Team Program(No.2019BT02H594)the National Key R&D Program of China(No.2021YFF0501202)+5 种基金the Youth Innovation Promotion Association CASthe National Natural Science Foundation of China(Nos.41706045,42176191,41773039,U22A2012)the Rising Star Foundation of the Integrated Research Center for Islands and Reefs Sciences,CAS(No.ZDRW-XH-2021-2-03)the CAS Key Laboratory of Science and Technology on Operational Oceanography Open Project Funding(No.OOST2021-01)the Guangdong Natural Science Foundation(No.2017A030313237)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Nos.SKLA202007,SKLA202106)。
文摘The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.
基金The National Natural Science Foundation of China under contract No.41706065the Basic Scientific Fund for National Public Research Institutes of China under contract No.2015G08+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers of China under contract No.U1606401the National Program on Global Change and Air-sea Interaction of China under contract No.GASI-GEOGE-05.
文摘Before the implementation of offshore oil and gas exploitation,it is essential to understand the various factors that influence the stability of submarine sediments surrounding the project.Considering the factors such as cost and operability,it is not feasible to assess the physical-mechanical properties of sediments covering the entire region by borehole sampling.In this study,the correlation between near seafloor seismic amplitude and the mean shear strength of shallow sediments was explored using seismic and core testing data from the northern continental slope area of the South China Sea.Results showed that the mean water content of sediments in the layer up to 12 m below the seafloor(mbsf)gradually increased with increasing water depth,and the mean shear strength tended to decrease rapidly near the 1000 m depth contour.The near seafloor seismic amplitude could reflect the mean shear strength of sediments in the 12 mbsf layer under seismic frequency of 65 Hz and wave velocity of 1600 m/s.When the mean shear strength was greater than 10 kPa or the water depth was less than 1000 m,there was a significant linear positive correlation between mean shear strength and near seafloor seismic amplitude.Otherwise,there was a significant linear negative correlation between mean shear strength and near seafloor seismic amplitude.On the basis of these correlations,the pattern of shear strength was estimated from near seafloor seismic amplitude and mapped.The mean shear strength of sediments above 12 mbsf gradually decreased with increasing water depth in the continental slope area,whereas little change occurred in the continental shelf and the end of the canyon.Within the canyon area,the mean shear strength of sediments was characterized by larger values in both sides of the canyon walls and smaller values in the canyon bottom,which was consistent with the infinite slope stability theory.The study provides a method for using near seafloor seismic amplitude data to guide sediment sampling design,and presents a continuous dataset of sediment strength for the simulation of regional sediment stability.
基金supported by the National Basic Research Program of China(No.2009CB219503)the Special Fund for Ministry of Land and Resources research of China in the Public Interest(201111026)the Natural Science Foundation of Shandong Province of China(No.ZR2009FQ017)
文摘For reasonable assessment and safe exploitation of marine gas hydrate resource, it is important to determine the stability conditions of gas hydrates in marine sediment. In this paper, the seafloor water sample and sediment sample (saturated with pore water) from Shenhu Area of South China Sea were used to synthesize methane hydrates, and the stability conditions of methane hydrates were investigated by multi-step heating dissociation method. Preliminary experimental results show that the dissociation temperature of methane hydrate both in seafloor water and marine sediment, under any given pressure, is depressed by approximately -1.4 K relative to the pure water system. This phenomenon indicates that hydrate stability in marine sediment is mainly affected by pore water ions.
基金This study was funded by the State Key Laboratory of Acoustics,Chinese Academy of Sciences(No.SKLA202007)the National Natural Science Foundation of China(Nos.41706045,42076082,41706062)+3 种基金the Director Fund of Qingdao National Laboratory for Marine Science and Technology(No.QNLM201713),the Guangdong Natural Science Foundation(No.2017A030313237)the Taishan Scholar Project Funding(No.tspd20161007)the Strate-gic Priority Research Program of the Chinese Academy of Sciences(No.XDA13010102)the Key Special Pro-ject for Introduced Talents Team of Southern Marine Sci-ence and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104).
文摘Three-hundred and thirty-one sediment cores,including six sediment types(clayey-and sandy-silt,silty-and sandy-clay,clayey-and silty-sand)were collected from the shallow and semi-deep seas of the South China Sea,and the P-wave velocities and physical properties of core sediments were measured under standard laboratory conditions.To eliminate the influence of environ-mental factors,the empirical sound speed ratio equations were established.Compared with several equations from literature,the po-rosity and wet bulk density empirical equations established in this paper agree well with Richardson and Briggs(2004)’s in-situ equations,which implies that our empirical equations can be used in the similar region of world’s oceans under certain conditions and will be useful in areas lacking first-hand P-wave speed data.However,the mean grain size equations established in this study,similar to the previous studies,have low accuracy,which may be due to the different particle arrangements and degrees of compac-tion in sediments.The results also show that for different sediment types,the equation based on all sediment data is in good agree-ment with the measured data in the study area,as there are both siliciclastic and carbonate sediments on the studied seabed.It is sug-gested that appropriate empirical equations should be selected according to sediment types and sedimentary environment in future works,and the empirical equation of porosity or the two-parameter equation of porosity and grain size should be preferred.
基金The National Key Research and Development Program of China under contract No.2018YFC1406206the National Natural Science Foundation of China under contract No.41876014.
文摘Offline bias correction of numerical marine forecast products is an effective post-processing means to improve forecast accuracy. Two offline bias correction methods for sea surface temperature(SST) forecasts have been developed in this study: a backpropagation neural network(BPNN) algorithm, and a hybrid algorithm of empirical orthogonal function(EOF) analysis and BPNN(named EOF-BPNN). The performances of these two methods are validated using bias correction experiments implemented in the South China Sea(SCS), in which the target dataset is a six-year(2003–2008) daily mean time series of SST retrospective forecasts for one-day in advance, obtained from a regional ocean forecast and analysis system called the China Ocean Reanalysis(CORA),and the reference time series is the gridded satellite-based SST. The bias-correction results show that the two methods have similar good skills;however, the EOF-BPNN method is more than five times faster than the BPNN method. Before applying the bias correction, the basin-wide climatological error of the daily mean CORA SST retrospective forecasts in the SCS is up to-3°C;now, it is minimized substantially, falling within the error range(±0.5°C) of the satellite SST data.
基金This paper is supported by the National Natural Science Foundation ofChina(Nos.40476030,40576031)andthe National Key Basic ResearchSpecial Foundation Project of China(No.G2000078501).
文摘On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of carbonate content with limited well measarements as a control. The method was applied to the slope area of the northern South China Sea near ODP Sites 1146 and 1148, and the results are satisfaetory. Before inversion calculation, a stepwise regression method was applied to obtain six properties related most closely to the carbonate content variations among the various properties on the seismic profiles across or near the wells. These include the average frequency, the integrated absolute amplitude, the dominant frequency, the reflection time, the derivative instantaneous amplitude, and the instantaneous frequency. The results, with carbonate content errors of mostly ±5 % relative to those measured from sediment samples, show a relatively accurate picture of carbonate distribution along the slope profile. This method pioneers a new quantitative model to acquire carbonate content variations directly from high-resolution seismic data. It will provide a new approach toward obtaining substitutive high-resolution sediment data for earth system studies related to basin evolution, especially in discussing the coupling between regional sedimentation and climate change.
基金We thank the PetroChina Hangzhou Research Institute of Geology for the permissions to release the seismic data.This study was financially supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0104)the Guangdong Basic and Applied Basic Research Foundation(No.2020B1515020016)+3 种基金the National Natural Science Foundation of Guangdong Province(No.2020A1515010497)the National Natu-ral Science Foundation of China(No.41876054)the Guangdong Pearl River Talents Program(No.2017GC010510)Dr.Wei Li is specially funded by the CAS Pioneer Hundred Talents Program(No.Y8SL011001).
文摘The seafloor around carbonate platforms is largely shaped and modified by downslope processes.However,the role of alongslope processes,including bottom currents,on the morphological development of carbonate platforms remains poorly understood.Here,we use high-resolution multibeam bathymetric data and two-dimensional seismic profiles to investigate the detailed sea-floor morphology around the Zhongjianbei carbonate platform(ZCP)in the northwest South China Sea.A series of depositional bodies and erosional channels are identified to the south of the ZCP and are interpreted as contourite drifts and channels resulted from the interaction between bottom currents and bathymetric features.In addition,active fluid seepages have led to the formation of widespread pockmarks on the seafloor.Importantly,the contourite channels and widespread pockmarks also show a close relationship in their distribution.We propose that the contourite channels around the ZCP are evolved from the coalescence of pockmarks under the persistent erosion of bottom currents.Based on the morphological analysis,we reconstruct the past bottom-current pathways around the ZCP that are parallel to the platform slopes and heading to the south.This study provides new insights into the formation of complex bathymetry and helps understanding how bottom currents and active fluid seepages can influence the morphological development around carbonate platforms.
基金the National Natural Science Foundation of China under Grant Nos 11434012 and 11874061
文摘Using deep convolutional neural networks as primary learners and a deep neural network as meta-learner, source ranging is solved as a regression problem with the ensemble learning method. Simulated acoustic data from the acoustic propagation model are used as the training data. Real data from an experiment in the South China Sea are used as the test data to demonstrate the performance. The results indicate that in the direct zone of deep water, signals received by a very deep receiver can be used to estimate the range of underwater sound source.Within 30 km, the mean absolute error of the range predictions is 1.0 km and the mean absolute percentage error is 7.9%.
基金supported by the National Natural Science Foundation of China (91028006)the National Basic Research Program of China(2007CB411700)
文摘On the basis of the summary of basic characteristics of propagation, the dynamic model of the tectonic evolution in the South-western Subbasin (SWSB), South China Sea (SCS), has been established through high resolution multi-beam swatch bathymetry and multi-channel seismic profiles, combined with magnetic anomaly analysis. Spreading propagates from NE to SW and shows a transition from steady seafloor spreading, to initial seafloor spreading, and to continental rifting in the southwest end. The spreading in SWSB (SCS) is tectonic dominated, with a series of phenomena of inhomogeneous tectonics and sedimentation.
文摘The seafloor observation system is becoming an important infrastructure for marine research because it is transforming oceanic research from temporal investigation to long term observation.The East China Sea coastal seafloor observatory,located between 30°31′44″N,122°15′12″E and 30°31′34″N,122°14′40″E,is constructed near the Xiaoqushan Island outside the Hangzhou Bay on the inner continental shelf of the East China Sea.The observatory is connected by a submarine optical fiber composite power cable that is more than one kilometer long and consists of a special junction box that transmits power and communication signals to different instruments.The special junction box has a variety of waterproof plugs and connects to three different instruments installed in a trawl preventer.The submarine optical fiber composite power cable is landed on the platform by The East China Sea Branch,State Oceanic Administration and the power is continuously supplied by the solar panels and solar battery on the top of the platform.The real time data are directly sent through the cable to the platform and are transmitted by CDMA wireless to the receiver at the State Key Laboratory of Marine Geology of Tongji University.Measurements at the observatory have been taken since April 20,2009 after installation and the results have been interpreted.The characteristics of the near bottom boundary are constrained by a sediment suspension model using portion of the observed data.In particular,discussion is provided on the sea surface height anomaly at Xiaoqushan Island influenced by the tsunami driven by the 2010 Earthquake in Chile.The successful establishment of the coastal seafloor observatory is the first step toward future development of seafloor observation systems in China.It not only accumulates experiences in technology and engineering,but also paves the way for performing important oceanic research using the long term continuous observation platform.
基金supported by the NSFC Open Research Cruise (Cruise No. NORC2021-08)funded by Shiptime Sharing Project of the NSFC+1 种基金supported by the National Natural Science Foundation of China (Grant No. 41890814)the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)
文摘Seismic data coverage in ocean regions is sparse,and it is highly challenging to build long-term continuous seismic networks in the oceans due to the restrictions related to the shortage of instruments and great costs.The lack of data coverage limits effective seismic imaging of deep mantle structures beneath the oceans,which cover 70%of the Earth’s surface.The newly developed Mobile Earthquake Recorder in Marine Areas by Independent Drivers(MERMAID)can drift with ocean currents at a specified depth while recording seismic signals.The Southern University of Science and Technology(SUSTech)launched 10 MERMAIDs in the South China Sea(SCS)in May 2021 that formed the South China Sea Floating Seismic Network(SCS-FSN).We analyzed the one-year-long records of the SCS-FSN,identifying 372 cataloged earthquakes and acquiring 1,015 high-quality travel time data.By analyzing the records of earthquakes with magnitudes above 7.0 and conducting synthetic waveform calculation,we found that,in addition to the epicentral distance and earthquake magnitude,the earthquake identification ability of the network is also affected by the focal mechanism,sea condition,seafloor relief,and MERMAID working state.Although the recognition rate of the SCS-FSN is only 16%for earthquakes with magnitudes above 5.5 and epicentral distances less than 90°,this network is expected to collect more than 5,000 high-quality travel time data during its five-year battery life.These new data will significantly improve the seismic data coverage,compensating for the lack of long-term continuous seismic network observations in the SCS.Most importantly,with this experiment,we are confident that setting up well-designed floating seismic networks in the world’s three oceans could solve the world-class problem of the lack of effective seismic data coverage beneath ocean regions.
基金supported by the National Natural Science Foundation of China(Grant No.91128000)
文摘Rapid developments of deep-sea researches in China over the past 20 years have promoted the South China Sea(SCS) into the international deep-sea frontiers. The 'three deep technologies', namely scientific drilling, long-term seafloor observation and deep submersible vehicles implemented successively in SCS studies helped to achieve a number of scientific breakthroughs. Over the 20 years, five international ocean drilling expeditions to the SCS recovered nearly 10 km of sediment cores from sites at 3–4 km water depths, and drilling into the magmatic basement at 6 sites shed light on the genesis of the SCS basin. Coupled with other deep-sea short core sediments from the SCS, these records demonstrate evidence that water and carbon cycling in the low latitude regions can directly respond to the orbital forcing, and subsequently nurture a new concept of lowlatitude forcing of climate changes, which challenges the classical wisdom of the overwhelming role played by the Arctic icesheet in climate changes. The exploration in the continent-ocean transition zone also reveals a number of specific features that characterize the SCS as a marginal basin formed at the subduction zone in the Western Pacific. The features include active magmatism and rapid rupture of lithosphere through the basin formation process, and imply that 'the SCS is not a mini-Atlantic'as they can be distinguished as 'plate-edge rifting' and 'inner-plate rifting' respectively, thus challenging the universality of the Atlantic model for passive margins. Many more discoveries can be assembled from long-term mooring observations and deep diving cruises in the deep SCS, such as the cyclonic nature of the deep-water circulation, deep-water sediment transport by contour currents and turbidites, manganese nodules, extinct hydrothermal vents, and cold-water coral forests. In addition,prominent progress achieved in microbiology and biogeochemistry includes the microbial carbon pump and the coupling of carbon and nitrogen cycles. Clearly, most achievements of the deep-sea explorations in the SCS over the last 20 years have always been of international scale and impact. However, the contributions from Chinese scientists are most prominent, particularly with the research activities undertaken from the major program 'Deep Sea Processes and Evolution of the South China Sea(2011–2018)' supported by the National Natural Science Foundation of China.
基金supported by Guangdong Natural Science Foundation (No. 7007508)
文摘The Zhongyebei (中业北) basin (ZYBB) is an NE-striking, narrow and small sedimentary basin superimposing the southern 1/2 segment of the proposed spreading axes of the SW subbasin of the South China Sea (SCS). More than 4 500 m strata were identified in the Zhongyebei basin, including the Paleogene lower structure layer and the Neogene upper structure layer. The SW subbasin of the South China Sea has been regarded as an oceanic basin opened by seafloor spreading, as evidenced by the flat and deep (〉 4 000 m mostly) seafloor with linear magnetic anomalies, and by the shallow Moho depth of 〈 12 km as estimated from gravity modeling. The classic model of seafloor spreading predicts that sediments on the oceanic crust are younger and thinner towards the spreading axes. But in the southwestern segment of the SW subbasin, contradictions appear. Firstly, the thick sedimentation in the ZYBB is along the proposed spreading axes. Secondly, the sediments are thinner (500-1 500 m) and younger away from the proposed spreading axes. Thirdly, geological elements of the two sides of spreading axes develop asymmetrically in the southwestern SW subbasin. Two models, the early opening model and the limited modeling model, are suggested for resolving this paradox. The former suggests that the opening of the SW subbasin was in Late Eocene and earlier than the oldest sediment in the ZYBB. The latter proposes that the opening of the SW subbasin was limited to its northeastern portion, and did not extend to the southwest portion. The ZYBB is a rift basin survived from the spreading but subjected to severe syn-spreading magmatic disturbance. The SW subbasin and the ZYBB of the SCS provide a unique opportunity for studying the structural evolution and dynamic mechanism at the tip of a propagating seafloor spreading. Both models have unresolved questions, and further studies are needed.
基金sponsored by the National Natural Science Foundation of China (91028007 and 40876022)the National Basic Research and Development Program (2007CB411702)the Research Fund for the Doctoral Program of Higher Education (20100072110036)
基金supported by National Natural Science Foundation of China(91128209 and 40176019)StateKey Laboratory of Marine Geology at Tongji University(MG20130306)
文摘Long-term passive source ocean bottom seismograph(OBS) observatory is challenging due to various technical difficulties. In order to gain experience in this field, and to reveal the lithospheric structure beneath the extinct ridge in the central South China Sea(SCS), we carried out a passive source OBS array experiment, which includes 18 OBSs, in the deep portion of SCS. Here we present the instrumentation, the OBS deployment and recovery of this experiment, and more importantly, the data quality evaluated by a number of approaches. Through processing and inspecting waveforms from global, regional and local earthquakes, we find that most of recovered OBSs have good data quality with discernible main phases. The ambient noise analyses of OBS recordings show that their noise is higher than the global average, and the horizontal component is noisier than the vertical, indicating current impacts on horizontal components are more severe. In the period range of 5–10 s, there is a noise notch for the SCS OBSs, and noise levels of horizontal components are comparable to the vertical. This feature, which is not seen at OBS stations in open ocean, suggests the distant sources for double frequency microseism in this marginal sea are not significant. In addition, we successfully determined the orientations for 7 OBSs by investigating their Rayleigh wave polarizations; and we demonstrated the dispersion feature of Rayleigh waves through the frequency-time analysis. Finally, we summarized lessons learned from this experiment regarding the passive source OBS investigations in SCS.