Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify ig...Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.展开更多
The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anoma...The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anomalies have a tendency to increase gradually theirvalues from the northern continental shelf, through the slope, to the central abyssal basin of theSouth China Sea. The change in free-air gravity anomaly values coincides to a certain degreewith the undulation of the sea-bottom topography. The primary factor determining regionalvariation of the Bouguer gravity anomayl values is the Moho depth. The main factor deter-mining the magnetic anomly values is the nature of the basement rock. The high magnetieand Bouguer gravity anomaly values observed in some fault basin areas are inferred to becaused by draping the basic and ultrabasic magma extruding along the faults on the basementof the metamorphic rock,or by intrusion of the same magma into the basement.展开更多
磁性基底和居里面是研究地壳和岩石圈的地质构造和热演化过程的两个重要磁性界面.为了研究南海及邻区磁性基底和居里面所反映的深部构造及其热活动的地质效应,本文在对磁异常进行化极处理的基础上,采用最小曲率位场分离方法,获得了磁性...磁性基底和居里面是研究地壳和岩石圈的地质构造和热演化过程的两个重要磁性界面.为了研究南海及邻区磁性基底和居里面所反映的深部构造及其热活动的地质效应,本文在对磁异常进行化极处理的基础上,采用最小曲率位场分离方法,获得了磁性基底和居里面引起的化极磁异常,利用双界面模型快速反演方法,反演了南海及邻区的磁性基底和居里面深度,研究了磁性基底、居里面深度及其分布特征,讨论了磁性基底、居里面与新生界深度之间相关性特征及其地质意义.研究表明,磁性基底深度5~20km,洋盆南北两侧磁性基底走向分别以NE、NEE向为主,中南半岛周缘磁性基底呈NW、NNW走向.居里面深度15~32km,宏观表现为"洋壳浅、周缘深"及周缘"北浅南深"的特征,洋盆地区居里面深度呈现"西南浅、东部深",洋壳与陆壳接触带在居里面深度上表现为梯级带特征.新生界深度与磁性基底深度相关性(Correlation between the depth of magnetic basement and Cenozoic,CDMBC)多以不规则形状分布,在盆地的沉积中心呈现正相关;新生界深度与居里面深度相关性(Correlation between the depth of Curie surface and Cenozoic,CDCSC)多呈NE、NEE向带状正相关分布,走向与盆地走向一致;莺歌海盆地、琼东南盆地、万安盆地南部和曾母盆地CDMBC呈正相关、CDCSC呈负相关,莺歌海相关性特征推测为:居里面随岩石圈变形隆起而抬升,磁性基底张裂下沉,发生大规模沉降引起;琼东南盆地相关性特征推测为:居里面随岩石圈变形下坳而下降,沉积中心与磁性基底下沉方向一致;万安盆地和曾母盆地相关性特征推测为:深部流体沿南海西缘断裂直接进入地壳,引起该处居里面深度变浅.展开更多
基金the National 863 Projects(Nos.2006AA06Z111,2006AA06201-3,and 2006AA09A101-3)National Special Project(No.SinoProbe-01-05)Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942).
文摘Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.
文摘The gravity and magnetic survey lines of about 13,500 km were carried out in the centraland northern parts of the South China Sea from 1977 to 1978. The results obtained showthat the Bouguer gravity and magnetic anomalies have a tendency to increase gradually theirvalues from the northern continental shelf, through the slope, to the central abyssal basin of theSouth China Sea. The change in free-air gravity anomaly values coincides to a certain degreewith the undulation of the sea-bottom topography. The primary factor determining regionalvariation of the Bouguer gravity anomayl values is the Moho depth. The main factor deter-mining the magnetic anomly values is the nature of the basement rock. The high magnetieand Bouguer gravity anomaly values observed in some fault basin areas are inferred to becaused by draping the basic and ultrabasic magma extruding along the faults on the basementof the metamorphic rock,or by intrusion of the same magma into the basement.
文摘磁性基底和居里面是研究地壳和岩石圈的地质构造和热演化过程的两个重要磁性界面.为了研究南海及邻区磁性基底和居里面所反映的深部构造及其热活动的地质效应,本文在对磁异常进行化极处理的基础上,采用最小曲率位场分离方法,获得了磁性基底和居里面引起的化极磁异常,利用双界面模型快速反演方法,反演了南海及邻区的磁性基底和居里面深度,研究了磁性基底、居里面深度及其分布特征,讨论了磁性基底、居里面与新生界深度之间相关性特征及其地质意义.研究表明,磁性基底深度5~20km,洋盆南北两侧磁性基底走向分别以NE、NEE向为主,中南半岛周缘磁性基底呈NW、NNW走向.居里面深度15~32km,宏观表现为"洋壳浅、周缘深"及周缘"北浅南深"的特征,洋盆地区居里面深度呈现"西南浅、东部深",洋壳与陆壳接触带在居里面深度上表现为梯级带特征.新生界深度与磁性基底深度相关性(Correlation between the depth of magnetic basement and Cenozoic,CDMBC)多以不规则形状分布,在盆地的沉积中心呈现正相关;新生界深度与居里面深度相关性(Correlation between the depth of Curie surface and Cenozoic,CDCSC)多呈NE、NEE向带状正相关分布,走向与盆地走向一致;莺歌海盆地、琼东南盆地、万安盆地南部和曾母盆地CDMBC呈正相关、CDCSC呈负相关,莺歌海相关性特征推测为:居里面随岩石圈变形隆起而抬升,磁性基底张裂下沉,发生大规模沉降引起;琼东南盆地相关性特征推测为:居里面随岩石圈变形下坳而下降,沉积中心与磁性基底下沉方向一致;万安盆地和曾母盆地相关性特征推测为:深部流体沿南海西缘断裂直接进入地壳,引起该处居里面深度变浅.