Crimean-Congo hemorrhagic fever(CCHF),caused by Crimean-Congo hemorrhagic fever virus(CCHFV),is endemic in Africa,Asia,and Europe,but CCHF epidemiology and epizootiology is only rudimentarily defined for most regions....Crimean-Congo hemorrhagic fever(CCHF),caused by Crimean-Congo hemorrhagic fever virus(CCHFV),is endemic in Africa,Asia,and Europe,but CCHF epidemiology and epizootiology is only rudimentarily defined for most regions.Here we summarize what is known about CCHF in Central,Eastern,and South-eastern Asia.Searching multiple international and country-specific databases using a One Health approach,we defined disease risk and burden through identification of CCHF cases,anti-CCHFV antibody prevalence,and CCHFV isolation from vector ticks.We identified 2313 CCHF cases that occurred in 1944–2021 in the three examined regions.Central Asian countries reported the majority of cases(2,026).In Eastern Asia,China was the only country that reported CCHF cases(287).In South-eastern Asia,no cases were reported.Next,we leveraged our previously established classification scheme to assign countries to five CCHF evidence levels.Six countries(China,Kazakhstan,Kyrgyzstan,Tajikistan,Turkmenistan,and Uzbekistan)were assigned to level 1 or level 2 based on CCHF case reports and the maturity of the countries’surveillance systems.Two countries(Mongolia and Myanmar)were assigned to level 3 due to evidence of CCHFV circulation in the absence of reported CCHF cases.Thirteen countries in Eastern and South-eastern Asia were categorized in levels 4 and 5 based on prevalence of CCHFV vector ticks.Collectively,this paper describes the past and present status of CCHF reporting to inform international and local public-health agencies to strengthen or establish CCHFV surveillance systems and address shortcomings.展开更多
To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simu...To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.展开更多
Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of...Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of the region’s economy.By its nature of intensive water use,agriculture is extremely vulnerable to climate change.Population growth and irrigation development have significantly increased the demand for water in the region.Major climate change issues include melting glaciers and a shrinking snowpack,which are the foundation of the region’s water resources,and a changing precipitation regime.Most glaciers are located in Kyrgyzstan and Tajikistan,leading to transboundary water resource issues.Summer already has extremely high temperatures.Analyses indicate that Central Asia has been warming and precipitation might be increasing.The warming is expected to increase,but its spatial and temporal distribution depends upon specific global scenarios.Projections of future precipitation show significant uncertainties in type,amount,and distribution.Regional Hydroclimate Projects(RHPs)are an approach to studying these issues.Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues.It was followed up with an online workshop and then,in 2023,an in-person workshop,held in Tashkent,Uzbekistan.Priorities for the Global Energy and Water Exchanges(GEWEX)project for the region include both observations and modeling,as well as development of better and additional precipitation observations,all of which are topics for the next workshop.A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation.展开更多
Eremurus was described at the beginning of the 19th century.However,due to limited sampling and the small number of gene markers to date,its phylogeny and evolution are largely unknown.In this study,we analyzed plasto...Eremurus was described at the beginning of the 19th century.However,due to limited sampling and the small number of gene markers to date,its phylogeny and evolution are largely unknown.In this study,we analyzed plastomes from 27 species belonging to 2 subgenera and 3 sections of Eremurus,which are found in Central Asia(its center of diversity)and China.We also analyzed nuclear DNA ITS of 33 species,encompassing all subgenera and sections of the genus in Central Asia,southwest Asia and China.Our findings revealed that the genus was monophyletic,although both subgenera Eremurus and Henningia were found to be paraphyletic.Both plastome and nrDNA-based phylogenetic trees had three clades that did not reflect the current taxonomy of the genus.Our biogeographical and time-calibrated trees suggest that Eremurus originated in the ancient Tethyan area in the second half of the Eocene.Diversification of Eremurus occurred from the early Oligocene to the late Miocene.Paratethys Sea retreat and several orogenetic events,such as the progressive uplift of the Qinghai-Tibet Plateau and surrounding mountain belts(Altai,Pamir,Tian Shan),caused serious topographic and climate(aridification)changes in Central Asia that may have triggered a split of clades and speciation.In this transformed Central Asia,speciation proceeded rapidly driven mainly by vicariance caused by numerous mountain chains and specialization to a variety of climatic,topographic and soil conditions that exist in this region.展开更多
Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing ...Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing it with temperate birds can enhance our understanding of bird migration behaviour and its underlying mecha-nisms.In this study,we explored the migration behaviour of a breeding population of the Barn Swallow(Hirundo rustica)in Zhanjiang,southern China,a region located in the northern tropics,using light-level geolocators.From 2021 to 2023,we deployed geolocators on 92 breeding swallows and retrieved geolocators successfully from 23 individuals.These swallows all exhibited migratory behaviour,and wintering on various islands in Southeast Asia.They displayed sex differences in their wintering locations.All males concentrated in Borneo,while females primarily chose Borneo but also dispersed to the Philippines,South China Sea,and Vietnam for wintering.The studied swallow population adopted a seasonal migration pattern of“indirect in autumn,direct in spring”,bypassing the ecological barrier of the South China Sea in autumn and tending to directly cross it in spring migration.Moreover,the distance and duration of autumn migration was significantly longer than those of the spring migration.Compared to temperate Barn Swallows,the Barn Swallow population breeding in Zhanjiang adopts a pattern of“intra-tropical migration”and initiates autumn migration earlier.The formation of their migration pattern may be limited by ecological and physiological factors.展开更多
Food security has been long understudied in the context of Central Asia.We present an analysis examining household-level food demand for Tajikistan and assessing the magnitude of its food security changes during the C...Food security has been long understudied in the context of Central Asia.We present an analysis examining household-level food demand for Tajikistan and assessing the magnitude of its food security changes during the COVID-19 pandemic.Based on an extensive household survey data set from Tajikistan,we estimate the expenditure,income,and price elasticities for nine food categories using the QUAIDS model.Then,we develop a microsimulation model using the estimated elasticities to assess the dual impact of declining remittance income and rising food prices stemming from the pandemic shock.There are significant differences in demand elasticities across food groups,with high elasticities observed for nutritious foods,such as meat,fruit,eggs,and milk,in rural households.Moreover,our findings show that changes in remittance income and food prices significantly negatively affected food security for rural households during the COVID-19 pandemic.These findings have important implications for policymakers concerned about rural livelihoods and food security in remittance-receiving economies during the post-pandemic period.展开更多
Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explo...Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species(Neochauliodes formosanus,Protohermes costalis,and Neoneuromus orientalis)belonging to the holometabolan order Megaloptera.These species,which share a broad and largely overlapping distribution,were analyzed using comprehensive mitogenomic data.Our findings revealed a consistent influence of vicariance on the population isolation of Neoc.formosanus and P.costalis between Hainan,Taiwan,and the East Asian mainland during the early Pleistocene,potentially hindering subsequent colonization of the later diverged Neon.orientalis to these islands.Additionally,we unveiled the dual function of the major mountain ranges in East Asia,serving both as barriers and conduits,in shaping the population structure of all three species.Notably,we demonstrated that these co-distributed species originated from Southwest,Southern,and eastern Central China,respectively,then subsequently migrated along multi-directional routes,leading to their sympatric distribution on the East Asian mainland.Furthermore,our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability.Overall,this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.展开更多
The increase in extreme precipitation(EP)may pose a serious threat to the health and safety of population in arid and semi-arid regions.The current research on the impact of EP on population in Central Asia(CA)is insu...The increase in extreme precipitation(EP)may pose a serious threat to the health and safety of population in arid and semi-arid regions.The current research on the impact of EP on population in Central Asia(CA)is insufficient and there is an urgent need for a comprehensive assessment.Hence,we opted for precipitation and temperature data under two Shared Socioeconomic Pathways(SSP2-4.5 and SSP5-8.5)from ten Global Climate Models(GCMs),which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP-CMIP6).By integrating population data in 2020 and 2050(SSP2 and SSP5),we investigated the future changes in EP and population exposure in CA under 1.5℃and 2℃global warming scenarios(GWSs).Our analysis indicates that EP in CA is projected to increase with global warming.Under the SSP5-8.5,the maximum daily precipitation(Rx1day)exhibits an average response rate to global warming of 3.58%/K(1.99-4.06%/K).With rising temperatures,an increasing number of areas and populations in CA will be impacted by EP,especially in the Fergana valley.Approximately 25%of the population(land area)in CA is exposed to Rx1day with increases of more than 8.31%(9.32%)under 1.5℃GWS and 14.18%(13.25%)under 2℃GWS.Controlling temperature rise can be effective in reducing population exposures to EP.For instance,limiting the temperature increase to 1.5℃instead of 2℃results in a 2.79%(1.75%-4.59%)reduction in population exposure to Rx1day.Finally,we found that climate change serves as the predominant factor influencing the population exposure to EP,while the role of population redistribution,although relatively minor,should not be disregarded.Particularly for prolonged drought,the role of population redistribution manifests negatively.展开更多
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B...The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.展开更多
This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in ...This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.展开更多
Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their ...Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their leading variability and associated causes remain unclear.Based on the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis product from 1979 to 2020,this study evealuates the severity of spring droughts in East Asia and investigates their variations and associated drivers.The results indicate that North China and Mongolia have experienced remarkable trends toward dryness during spring in recent decades,while southwestern China has witnessed an opposite trend toward wetness.The first Empirical Orthogonal Function mode of SPEI variability reveals a similar seesawing pattern,with more severe dryness in northwestern China,Mongolia,North China,South Korea,and Japan but increased wetness in Southwestern China and southeast Asia.Further investigation reveals that the anomalously dry(wet)surface in North(Southwestern)China is significantly associated with anomalously high(low)temperature,less(more)precipitation,and reduced(increased)soil moisture during the previous winter and early spring,regulated by an anomalous anticyclone(cyclone)and thus reduced(increased)water vapor convergence.The spring dry-wet pattern in East Asia is also linked to cold sea surface temperature anomalies in the central-eastern Pacific.The findings of this study have important implications for improving the prediction of spring drought events in East Asia.展开更多
High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across...The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.展开更多
Objective: IMpower210(NCT02813785) explored the efficacy and safety of single-agent atezolizumab vs.docetaxel as second-line treatment for advanced non-small cell lung cancer(NSCLC) in East Asian patients.Methods: Key...Objective: IMpower210(NCT02813785) explored the efficacy and safety of single-agent atezolizumab vs.docetaxel as second-line treatment for advanced non-small cell lung cancer(NSCLC) in East Asian patients.Methods: Key eligibility criteria for this phase Ⅲ, open-label, randomized study included age ≥18 years;histologically documented advanced NSCLC per the Union for International Cancer Control/American Joint Committee on Cancer staging system(7th edition);Eastern Cooperative Oncology Group performance status of 0 or 1;and disease progression following platinum-based chemotherapy for advanced or metastatic NSCLC. Patients were randomized 2:1 to receive either atezolizumab(1,200 mg) or docetaxel(75 mg/m^(2)). The primary study endpoint was overall survival(OS) in the intention-to-treat(ITT) population with wild-type epidermal growth factor receptor expression(ITT EGFR-WT) and in the overall ITT population.Results: Median OS in the ITT EGFR-WT population(n=467) was 12.3 [95% confidence interval(95% CI),10.3-13.8] months in the atezolizumab arm(n=312) and 9.9(95% CI, 7.8-13.9) months in the docetaxel arm[n=155;stratified hazard ratio(HR), 0.82;95% CI, 0.66-1.03]. Median OS in the overall ITT population was 12.5(95% CI, 10.8-13.8) months with atezolizumab treatment and 11.1(95% CI, 8.4-14.2) months(n=377) with docetaxel treatment(n=188;stratified HR, 0.87;95% CI, 0.71-1.08). Grade 3/4 treatment-related adverse events(TRAEs) occurred in 18.4% of patients in the atezolizumab arm and 50.0% of patients in the docetaxel arm.Conclusions: IMpower210 did not meet its primary efficacy endpoint of OS in the ITT EGFR-WT or overall ITT populations. Atezolizumab was comparatively more tolerable than docetaxel, with a lower incidence of grade3/4 TRAEs.展开更多
It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break t...It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break this stereotype in 1987,followed by Catherine Delano-Smith and Chet Van Duzer who discovered a few Renaissance maps and two Qing dynasty maps that showed use of hand stamps.Inspired by these findings,this paper explores the stamped map signs in ten Chinese maps,three Japanese maps,and three Korean maps.By analyzing each map and each type of stamp,this paper provides more examples of this research,broadens the research horizons and geographical area,and demonstrates that use of stamps in manuscript maps was invented independently among people of different regions and civilizations as a result of human nature.展开更多
Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurren...Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurrences of heatwaves between the grid cells in East Asia and Eastern Europe,even though they are geographically far away from each other.By further composite analysis,this study revealed that hot events first occurred in Eastern Europe,typically with a time lag of3-4 days before the East Asian heatwave events.An eastward propagating atmospheric wave train,known as the circumglobal teleconnection(CGT)pattern,bridged the sequent occurrences of extreme events in these two remote regions.Atmospheric blockings,amplified by surface warming over Eastern Europe,not only enhanced local heat extremes but also excited a CGT-like pattern characterized by alternative anomalies of high and low pressures.Subsequent downstream anticyclones in the middle and upper troposphere reduced local cloud cover and increased downward solar radiation,thereby facilitating the formation of heatwaves over East Asia.Nearly half of East Asian heatwave events were preceded by Eastern European heatwave events in the 10-day time range before East Asian heatwave events.This investigation of heatwave teleconnection in the two distant regions exhibits strong potential to improve the prediction accuracy of East Asian heatwaves.展开更多
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati...Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.展开更多
Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the...Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.展开更多
The 2024 election is a pivotal and highly contested event in the United States.Donald Trump is expected to compete against Joe Biden without any doubts.A potential return of Trump to the White House would likely cause...The 2024 election is a pivotal and highly contested event in the United States.Donald Trump is expected to compete against Joe Biden without any doubts.A potential return of Trump to the White House would likely cause significant reactions in East Asia,particularly among the three major countries in the region.This analysis will explore the detailed implications of Trump’s return.展开更多
基金supported in part through Laulima Government Solutions,LLC,prime contract with the U.S.National Institute of Allergy and Infectious Diseases(NIAID)under Contract No.HHSN272201800013CJ.H.K.performed this work as an employee of Tunnell Government Services(TGS),a subcontractor of Laulima Government Solutions,LLC,under Contract No.HHSN272201800013C.
文摘Crimean-Congo hemorrhagic fever(CCHF),caused by Crimean-Congo hemorrhagic fever virus(CCHFV),is endemic in Africa,Asia,and Europe,but CCHF epidemiology and epizootiology is only rudimentarily defined for most regions.Here we summarize what is known about CCHF in Central,Eastern,and South-eastern Asia.Searching multiple international and country-specific databases using a One Health approach,we defined disease risk and burden through identification of CCHF cases,anti-CCHFV antibody prevalence,and CCHFV isolation from vector ticks.We identified 2313 CCHF cases that occurred in 1944–2021 in the three examined regions.Central Asian countries reported the majority of cases(2,026).In Eastern Asia,China was the only country that reported CCHF cases(287).In South-eastern Asia,no cases were reported.Next,we leveraged our previously established classification scheme to assign countries to five CCHF evidence levels.Six countries(China,Kazakhstan,Kyrgyzstan,Tajikistan,Turkmenistan,and Uzbekistan)were assigned to level 1 or level 2 based on CCHF case reports and the maturity of the countries’surveillance systems.Two countries(Mongolia and Myanmar)were assigned to level 3 due to evidence of CCHFV circulation in the absence of reported CCHF cases.Thirteen countries in Eastern and South-eastern Asia were categorized in levels 4 and 5 based on prevalence of CCHFV vector ticks.Collectively,this paper describes the past and present status of CCHF reporting to inform international and local public-health agencies to strengthen or establish CCHFV surveillance systems and address shortcomings.
基金supported by the Chinese-Norwegian Collaboration Projects within Climate Systems jointly funded by the National Key Research and Development Program of China (Grant No.2022YFE0106800)the Research Council of Norway funded project MAPARC (Grant No.328943)+2 种基金the support from the Research Council of Norway funded project BASIC (Grant No.325440)the Horizon 2020 project APPLICATE (Grant No.727862)High-performance computing and storage resources were performed on resources provided by Sigma2 - the National Infrastructure for High-Performance Computing and Data Storage in Norway (through projects NS8121K,NN8121K,NN2345K,NS2345K,NS9560K,NS9252K,and NS9034K)。
文摘To quantify the relative contributions of Arctic sea ice and unforced atmospheric internal variability to the “warm Arctic, cold East Asia”(WACE) teleconnection, this study analyses three sets of large-ensemble simulations carried out by the Norwegian Earth System Model with a coupled atmosphere–land surface model, forced by seasonal sea ice conditions from preindustrial, present-day, and future periods. Each ensemble member within the same set uses the same forcing but with small perturbations to the atmospheric initial state. Hence, the difference between the present-day(or future) ensemble mean and the preindustrial ensemble mean provides the ice-loss-induced response, while the difference of the individual members within the present-day(or future) set is the effect of atmospheric internal variability. Results indicate that both present-day and future sea ice loss can force a negative phase of the Arctic Oscillation with a WACE pattern in winter. The magnitude of ice-induced Arctic warming is over four(ten) times larger than the ice-induced East Asian cooling in the present-day(future) experiment;the latter having a magnitude that is about 30% of the observed cooling. Sea ice loss contributes about 60%(80%) to the Arctic winter warming in the present-day(future) experiment. Atmospheric internal variability can also induce a WACE pattern with comparable magnitudes between the Arctic and East Asia. Ice-lossinduced East Asian cooling can easily be masked by atmospheric internal variability effects because random atmospheric internal variability may induce a larger magnitude warming. The observed WACE pattern occurs as a result of both Arctic sea ice loss and atmospheric internal variability, with the former dominating Arctic warming and the latter dominating East Asian cooling.
基金The National Research University Tashkent Institute of Irrigation and Agricultural Mechanization Engineers of Uzbekistan hosted and provided financial support for the in-person workshop in May of 2023
文摘Central Asia consists of the former Soviet Republics,Kazakhstan,Kyrgyz Republic,Tajikistan,Turkmenistan,and Uzbekistan.The region’s climate is continental,mostly semi-arid to arid.Agriculture is a significant part of the region’s economy.By its nature of intensive water use,agriculture is extremely vulnerable to climate change.Population growth and irrigation development have significantly increased the demand for water in the region.Major climate change issues include melting glaciers and a shrinking snowpack,which are the foundation of the region’s water resources,and a changing precipitation regime.Most glaciers are located in Kyrgyzstan and Tajikistan,leading to transboundary water resource issues.Summer already has extremely high temperatures.Analyses indicate that Central Asia has been warming and precipitation might be increasing.The warming is expected to increase,but its spatial and temporal distribution depends upon specific global scenarios.Projections of future precipitation show significant uncertainties in type,amount,and distribution.Regional Hydroclimate Projects(RHPs)are an approach to studying these issues.Initial steps to develop an RHP began in 2021 with a widely distributed online survey about these climate issues.It was followed up with an online workshop and then,in 2023,an in-person workshop,held in Tashkent,Uzbekistan.Priorities for the Global Energy and Water Exchanges(GEWEX)project for the region include both observations and modeling,as well as development of better and additional precipitation observations,all of which are topics for the next workshop.A well-designed RHP should lead to reductions in critical climate uncertainties in policy-relevant timeframes that can influence decisions on necessary investments in climate adaptation.
基金supported by grants from the Key Projects of the Joint Fund of the National Natural Science Foundation of China (U23A20149)the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0502)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20050203)International Partnership Program of the Chinese Academy of Sciences (151853KYSB20180009)the state research project Taxonomic revision of polymorphic plant families of the flora of Uzbekistan’ (FZ-20200929321)the State Programs for the years 2021-2025 ’Grid mapping of the flora of Uzbekistan’ and the ’Tree of life:monocots of Uzbekistan’ of the Institute of Botany of the Academy of Sciences of the Republic of Uzbekistan
文摘Eremurus was described at the beginning of the 19th century.However,due to limited sampling and the small number of gene markers to date,its phylogeny and evolution are largely unknown.In this study,we analyzed plastomes from 27 species belonging to 2 subgenera and 3 sections of Eremurus,which are found in Central Asia(its center of diversity)and China.We also analyzed nuclear DNA ITS of 33 species,encompassing all subgenera and sections of the genus in Central Asia,southwest Asia and China.Our findings revealed that the genus was monophyletic,although both subgenera Eremurus and Henningia were found to be paraphyletic.Both plastome and nrDNA-based phylogenetic trees had three clades that did not reflect the current taxonomy of the genus.Our biogeographical and time-calibrated trees suggest that Eremurus originated in the ancient Tethyan area in the second half of the Eocene.Diversification of Eremurus occurred from the early Oligocene to the late Miocene.Paratethys Sea retreat and several orogenetic events,such as the progressive uplift of the Qinghai-Tibet Plateau and surrounding mountain belts(Altai,Pamir,Tian Shan),caused serious topographic and climate(aridification)changes in Central Asia that may have triggered a split of clades and speciation.In this transformed Central Asia,speciation proceeded rapidly driven mainly by vicariance caused by numerous mountain chains and specialization to a variety of climatic,topographic and soil conditions that exist in this region.
基金supported by the National Natural Science Foundation of China(32101236,32270518)National Key R&D Program of China(2022YFF0802400).
文摘Birds exhibit a high degree of migratory diversity,which is influenced by various ecological factors and life history strategies.Conducting studies on tropical bird migration,of which research is scarce,and comparing it with temperate birds can enhance our understanding of bird migration behaviour and its underlying mecha-nisms.In this study,we explored the migration behaviour of a breeding population of the Barn Swallow(Hirundo rustica)in Zhanjiang,southern China,a region located in the northern tropics,using light-level geolocators.From 2021 to 2023,we deployed geolocators on 92 breeding swallows and retrieved geolocators successfully from 23 individuals.These swallows all exhibited migratory behaviour,and wintering on various islands in Southeast Asia.They displayed sex differences in their wintering locations.All males concentrated in Borneo,while females primarily chose Borneo but also dispersed to the Philippines,South China Sea,and Vietnam for wintering.The studied swallow population adopted a seasonal migration pattern of“indirect in autumn,direct in spring”,bypassing the ecological barrier of the South China Sea in autumn and tending to directly cross it in spring migration.Moreover,the distance and duration of autumn migration was significantly longer than those of the spring migration.Compared to temperate Barn Swallows,the Barn Swallow population breeding in Zhanjiang adopts a pattern of“intra-tropical migration”and initiates autumn migration earlier.The formation of their migration pattern may be limited by ecological and physiological factors.
基金the National Natural Science Foundation of China(71961147001)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(10-IAED-04-2023)。
文摘Food security has been long understudied in the context of Central Asia.We present an analysis examining household-level food demand for Tajikistan and assessing the magnitude of its food security changes during the COVID-19 pandemic.Based on an extensive household survey data set from Tajikistan,we estimate the expenditure,income,and price elasticities for nine food categories using the QUAIDS model.Then,we develop a microsimulation model using the estimated elasticities to assess the dual impact of declining remittance income and rising food prices stemming from the pandemic shock.There are significant differences in demand elasticities across food groups,with high elasticities observed for nutritious foods,such as meat,fruit,eggs,and milk,in rural households.Moreover,our findings show that changes in remittance income and food prices significantly negatively affected food security for rural households during the COVID-19 pandemic.These findings have important implications for policymakers concerned about rural livelihoods and food security in remittance-receiving economies during the post-pandemic period.
基金supported by the National Natural Science Foundation of China(32170448,32130012,32300374)Beijing Natural Science Foundation(5212011)2115 Talent Development Program of China Agricultural University,and National Animal Collection Resource Center,China。
文摘Unraveling the phylogeographic histories of species remains a key endeavor for comprehending the evolutionary processes contributing to the rich biodiversity and high endemism found in East Asia.In this study,we explored the phylogeographic patterns and demographic histories of three endemic fishfly and dobsonfly species(Neochauliodes formosanus,Protohermes costalis,and Neoneuromus orientalis)belonging to the holometabolan order Megaloptera.These species,which share a broad and largely overlapping distribution,were analyzed using comprehensive mitogenomic data.Our findings revealed a consistent influence of vicariance on the population isolation of Neoc.formosanus and P.costalis between Hainan,Taiwan,and the East Asian mainland during the early Pleistocene,potentially hindering subsequent colonization of the later diverged Neon.orientalis to these islands.Additionally,we unveiled the dual function of the major mountain ranges in East Asia,serving both as barriers and conduits,in shaping the population structure of all three species.Notably,we demonstrated that these co-distributed species originated from Southwest,Southern,and eastern Central China,respectively,then subsequently migrated along multi-directional routes,leading to their sympatric distribution on the East Asian mainland.Furthermore,our results highlighted the significance of Pleistocene land bridges along the eastern coast of East Asia in facilitating the dispersal of mountain-dwelling insects with low dispersal ability.Overall,this study provides novel insight into the synergistic impact of Pleistocene geological and climatic events in shaping the diversity and distribution of aquatic insects in East Asia.
基金supported by the Tienshan Talent Program in Xinjiang(Grant No.2023TSYCLJ0050)the National Natural Science Foundation of China(Grant No.42122004)the West Light Founda-tion of the Chinese Academy of Sciences(Grant No.xbzg-zdsys-202208).
文摘The increase in extreme precipitation(EP)may pose a serious threat to the health and safety of population in arid and semi-arid regions.The current research on the impact of EP on population in Central Asia(CA)is insufficient and there is an urgent need for a comprehensive assessment.Hence,we opted for precipitation and temperature data under two Shared Socioeconomic Pathways(SSP2-4.5 and SSP5-8.5)from ten Global Climate Models(GCMs),which were obtained from the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP-CMIP6).By integrating population data in 2020 and 2050(SSP2 and SSP5),we investigated the future changes in EP and population exposure in CA under 1.5℃and 2℃global warming scenarios(GWSs).Our analysis indicates that EP in CA is projected to increase with global warming.Under the SSP5-8.5,the maximum daily precipitation(Rx1day)exhibits an average response rate to global warming of 3.58%/K(1.99-4.06%/K).With rising temperatures,an increasing number of areas and populations in CA will be impacted by EP,especially in the Fergana valley.Approximately 25%of the population(land area)in CA is exposed to Rx1day with increases of more than 8.31%(9.32%)under 1.5℃GWS and 14.18%(13.25%)under 2℃GWS.Controlling temperature rise can be effective in reducing population exposures to EP.For instance,limiting the temperature increase to 1.5℃instead of 2℃results in a 2.79%(1.75%-4.59%)reduction in population exposure to Rx1day.Finally,we found that climate change serves as the predominant factor influencing the population exposure to EP,while the role of population redistribution,although relatively minor,should not be disregarded.Particularly for prolonged drought,the role of population redistribution manifests negatively.
基金Support by the National Natural Science Foundation of China(No.92258303)the Project of Donghai Laboratory(No.DH-2022ZY0005)。
文摘The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works.
基金the National Natural Science Foundation of China(Grant Nos.42005029 and 42130504)the Research Program on Decision Services of China Meteorological Administration(Nos.JCZX2023026 and JCZX2022021).
文摘This study investigates the evolution of an extreme anomalous anticyclone(AA)event over Northeast Asia,which was one of the dominant circulation systems responsible for the catastrophic extreme precipitation event in July 2021 in Henan,and further explores the significant impact of this AA on surface temperatures beneath it.The results indicate that this AA event over Northeast Asia was unprecedented in terms of intensity and duration.The AA was very persistent and extremely strong for 10 consecutive days from 13 to 22 July 2021.This long-lived and unprecedented AA led to the persistence of warmer surface temperatures beyond the temporal span of the pronounced 500-hPa anticyclonic signature as the surface air temperatures over land in Northeast Asia remained extremely warm through 29 July 2021.Moreover,the sea surface temperatures in the Sea of Japan/East Sea were extremely high for 30 consecutive days from 13 July to 11 August 2021,persisting well after the weakening or departure of this AA.These results emphasize the extreme nature of this AA over Northeast Asia in July 2021 and its role in multiple extreme climate events,even over remote regions.Furthermore,possible reasons for this long-lasting AA are explored,and it is suggested to be a byproduct of a teleconnection pattern over extratropical Eurasia during the first half of its life cycle,and of the Pacific-Japan teleconnection pattern during the latter half.
基金National Natural Science Foundation of China(42230603,42275020)Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+3 种基金Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies(2020B1212060025)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(311021001)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography,MNR(QNHX2310)Future Earth Early-Career Fellowship of the Future Earth Global Secretariat Hub China。
文摘Drought events have become more frequent and intense over East Asia in recent decades,leading to huge socioeconomic impacts.Although the droughts have been studied extensively by cases or for individual regions,their leading variability and associated causes remain unclear.Based on the Standardized Precipitation Evapotranspiration Index(SPEI)and ERA5 reanalysis product from 1979 to 2020,this study evealuates the severity of spring droughts in East Asia and investigates their variations and associated drivers.The results indicate that North China and Mongolia have experienced remarkable trends toward dryness during spring in recent decades,while southwestern China has witnessed an opposite trend toward wetness.The first Empirical Orthogonal Function mode of SPEI variability reveals a similar seesawing pattern,with more severe dryness in northwestern China,Mongolia,North China,South Korea,and Japan but increased wetness in Southwestern China and southeast Asia.Further investigation reveals that the anomalously dry(wet)surface in North(Southwestern)China is significantly associated with anomalously high(low)temperature,less(more)precipitation,and reduced(increased)soil moisture during the previous winter and early spring,regulated by an anomalous anticyclone(cyclone)and thus reduced(increased)water vapor convergence.The spring dry-wet pattern in East Asia is also linked to cold sea surface temperature anomalies in the central-eastern Pacific.The findings of this study have important implications for improving the prediction of spring drought events in East Asia.
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金supported by grants from the National Natural Science Foundation of China(32170398,42211540718,32260149,41971071)the Top-notch Young Talents Project of Yunnan Provincial“Ten Thousand Talents Program”(YNWR-QNBJ-2018-146)+5 种基金CAS“Light ofWest China”Program,and Natural Science Foundation of Yunnan(202201AT070222)the Fund of Yunnan Key Laboratory of Crop Wild Relatives Omics(CWR-2024-04)the Jiangxi Provincial Natural Science Foundation(20224BAB215012)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ2202401)Key Research Program of Frontier Sciences,CAS(ZDBSLY-7001)Yunnan Fundamental Research Projects(202201BC070001).
文摘The common walnut(Juglans regia)is one of the most economically important nut trees cultivated worldwide.Despite its importance,no comprehensive evaluation of walnut tree population genetics has been undertaken across the range where it originated,Central Asia.In this study,we investigated the genetic diversity and population structure of 1082 individuals from 46 populations across Central Asia.We found moderate genetic diversity of J.regia across Central Asia,with 46 populations clustered into three groups with a weak relationship between genetic and geographic distance.Our findings reveal that the western Himalaya might be the core region of common walnut genetic diversity in Central Asia and that,except for two populations in Gongliu Wild Walnut Valley,humans might have introduced walnut populations to Xinjiang,China.The observed distribution of the genetic landscape has probably been affected by historical climate fluctuation,breeding system,and prolonged anthropogenic activity.We propose the conservation of the core genetic diversity resources in the western Himalaya and pay special attention to populations from Gongliu in Xinjiang.These findings enhance our understanding of the genetic variation throughout the distribution range of J.regia in Central Asia,which will provide a key prerequisite for evidence-based conservation and management.
基金funded by F. Hoffmann-La Roche Ltd. F. Hoffmann-La Roche Ltd sponsored the IMpower210 study。
文摘Objective: IMpower210(NCT02813785) explored the efficacy and safety of single-agent atezolizumab vs.docetaxel as second-line treatment for advanced non-small cell lung cancer(NSCLC) in East Asian patients.Methods: Key eligibility criteria for this phase Ⅲ, open-label, randomized study included age ≥18 years;histologically documented advanced NSCLC per the Union for International Cancer Control/American Joint Committee on Cancer staging system(7th edition);Eastern Cooperative Oncology Group performance status of 0 or 1;and disease progression following platinum-based chemotherapy for advanced or metastatic NSCLC. Patients were randomized 2:1 to receive either atezolizumab(1,200 mg) or docetaxel(75 mg/m^(2)). The primary study endpoint was overall survival(OS) in the intention-to-treat(ITT) population with wild-type epidermal growth factor receptor expression(ITT EGFR-WT) and in the overall ITT population.Results: Median OS in the ITT EGFR-WT population(n=467) was 12.3 [95% confidence interval(95% CI),10.3-13.8] months in the atezolizumab arm(n=312) and 9.9(95% CI, 7.8-13.9) months in the docetaxel arm[n=155;stratified hazard ratio(HR), 0.82;95% CI, 0.66-1.03]. Median OS in the overall ITT population was 12.5(95% CI, 10.8-13.8) months with atezolizumab treatment and 11.1(95% CI, 8.4-14.2) months(n=377) with docetaxel treatment(n=188;stratified HR, 0.87;95% CI, 0.71-1.08). Grade 3/4 treatment-related adverse events(TRAEs) occurred in 18.4% of patients in the atezolizumab arm and 50.0% of patients in the docetaxel arm.Conclusions: IMpower210 did not meet its primary efficacy endpoint of OS in the ITT EGFR-WT or overall ITT populations. Atezolizumab was comparatively more tolerable than docetaxel, with a lower incidence of grade3/4 TRAEs.
文摘It was generally accepted that manuscript maps,as distinct from printed maps,exhibited no signs of printing and were entirely hand-drawn.Western scholars Christopher Terrell and Tony Campbell were the first to break this stereotype in 1987,followed by Catherine Delano-Smith and Chet Van Duzer who discovered a few Renaissance maps and two Qing dynasty maps that showed use of hand stamps.Inspired by these findings,this paper explores the stamped map signs in ten Chinese maps,three Japanese maps,and three Korean maps.By analyzing each map and each type of stamp,this paper provides more examples of this research,broadens the research horizons and geographical area,and demonstrates that use of stamps in manuscript maps was invented independently among people of different regions and civilizations as a result of human nature.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)National Natural Science Foundation of China (42275020)+1 种基金Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311021001)Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies (2020B1212060025)。
文摘Concurrent extreme weather events in geographically distant areas potentially cause high-end risks for societies.By using network analysis,the present study managed to identify significant nearly-simultaneous occurrences of heatwaves between the grid cells in East Asia and Eastern Europe,even though they are geographically far away from each other.By further composite analysis,this study revealed that hot events first occurred in Eastern Europe,typically with a time lag of3-4 days before the East Asian heatwave events.An eastward propagating atmospheric wave train,known as the circumglobal teleconnection(CGT)pattern,bridged the sequent occurrences of extreme events in these two remote regions.Atmospheric blockings,amplified by surface warming over Eastern Europe,not only enhanced local heat extremes but also excited a CGT-like pattern characterized by alternative anomalies of high and low pressures.Subsequent downstream anticyclones in the middle and upper troposphere reduced local cloud cover and increased downward solar radiation,thereby facilitating the formation of heatwaves over East Asia.Nearly half of East Asian heatwave events were preceded by Eastern European heatwave events in the 10-day time range before East Asian heatwave events.This investigation of heatwave teleconnection in the two distant regions exhibits strong potential to improve the prediction accuracy of East Asian heatwaves.
文摘Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.
基金supported by the the Basic Frontier Project of Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences(E3500201)the Xinjiang Tianshan Talent Program(2022TSYCLJ0002)the Fundamental Research Funds for the Central Universities(ZY20240223).
文摘Understanding the spatial distribution of plant species and their dynamic changes in arid areas is crucial for addressing the challenges posed by climate change.Haloxylon ammodendron shelterbelts are essential for the protection of plant resources and the control of desertification in Central Asia.Thus far,the potential suitable habitats of H.ammodendron in Central Asia are still uncertain in the future under global climate change conditions.This study utilised the maximum entropy(MaxEnt)model to combine the current distribution data of H.ammodendron with its growth-related data to analyze the potential distribution pattern of H.ammodendron across Central Asia.The results show that there are suitable habitats of H.ammodendron in the Aralkum Desert,northern slopes of the Tianshan Mountains,and the upstream of the Tarim River and western edge of the Taklimakan Desert in the Tarim Basin under the current climate conditions.The period from 2021 to 2040 is projected to undergo significant changes in the suitable habitat area of H.ammodendron in Central Asia,with a projected 15.0% decrease in the unsuitable habitat area.Inland areas farther from the ocean,such as the Caspian Sea and Aralkum Desert,will continue to experience a decrease in the suitable habitats of H.ammodendron.Regions exhibiting frequent fluctuations in the habitat suitability levels are primarily found along the axis stretching from Astana to Kazakhskiy Melkosopochnik in Kazakhstan.These regions can transition into suitable habitats under varying climate conditions,requiring the implementation of appropriate human intervention measures to prevent desertification.Future climate conditions are expected to cause an eastward shift in the geometric centre of the potential suitable habitats of H.ammodendron,with the extent of this shift amplifying alongside more greenhouse gas emissions.This study can provide theoretical support for the spatial configuration of H.ammodendron shelterbelts and desertification control in Central Asia,emphasising the importance of proactive measures to adapt to climate change in the future.
文摘The 2024 election is a pivotal and highly contested event in the United States.Donald Trump is expected to compete against Joe Biden without any doubts.A potential return of Trump to the White House would likely cause significant reactions in East Asia,particularly among the three major countries in the region.This analysis will explore the detailed implications of Trump’s return.