Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we exam...Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.展开更多
The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vort...The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.展开更多
The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future...The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.展开更多
This study examines the relationships among the monsoon-like southwest Australian circulation (SWAC), the South- ern Annular Mode (SAM), and southwest Western Australia winter rainfall (SWR), based on observed r...This study examines the relationships among the monsoon-like southwest Australian circulation (SWAC), the South- ern Annular Mode (SAM), and southwest Western Australia winter rainfall (SWR), based on observed rainfall, reanalysis datasets, and the results of numerical modeling. By decomposing the SWAC into two components using a linear model, i.e. the component related to SAM (RSAM) and the component unrelated to SAM (SWACI*), we find it is the SWACI* that shows a significant influence on SWR. Similarly, it is the component of SAM associated with SWAC that exhibits an impact on SWR, whereas the component unrelated to SAM. A similar result is obtained in terms of the circulation associated with SWAC and the SAM. These facts suggest the SAM plays an indirect role in influencing SWR, and raise the possibility that SWAC acts as a bridge between the SAM and SWR, by which the SAM passes its influences onto SWR. This is due to the fact that the variations of SWAC are closely linked to the thermal contrast between land and sea across the southern Indian Ocean and southwest Australia. By contrast, the SAM does not significantly relate to this thermal structure, particularly for the component unrelated to SWAC. The variations of surface sea temperature over the southern Indian Ocean contribute to the favored rainfall circulation patterns. This finding is supported by the numerical modeling results. The strong coupling between SWAC and SWR may be instrumental for understanding the interactions between SWR and the southern Indian Ocean, and provides another perspective in examining the variations in SWR.展开更多
The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results fr...The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June−July−August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)−1,larger than the multimodel ensemble mean of 0.18(10 yr)−1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD−SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD−SAM relationship may help reproduce long-term changes in the SAM.展开更多
One of the major high-latitude circulation systems in the Southern Hemisphere is the Southern Annular Mode(SAM). Its effect on the Somali Jet(SMJ), which connects the Southern and Northern hemispheres, cannot be ignor...One of the major high-latitude circulation systems in the Southern Hemisphere is the Southern Annular Mode(SAM). Its effect on the Somali Jet(SMJ), which connects the Southern and Northern hemispheres, cannot be ignored. The present reported results show that time series of both the Southern Annular Mode Index(SAMI) during the preceding winter and the summertime Somali Jet intensity Index(SMJI) display a significant increasing trend and have similar interdecadal variation. The latter was rather strong around 1960, then became weaker up to the mid-1980 s, before starting to strengthen again. The lead-lag correlations of monthly mean SAMI with the following summertime SMJI showed significant positive correlations in November, December, and January. There are thus connections across two seasons between the SAM and the SMJ. The influence of the winter SAM on the summer SMJ was explored via analyses of SST anomalies in the Southern Indian Ocean. During strong(weak) SAM/SMJ years, the SST east of Madagascar is colder(warmer) while the SST west of Australia is warmer(colder), corresponding to the positive(negative) Southern Indian Ocean Dipole-like(SIODL) event. Subsequently, the SIODL excites an anticyclone located over the Arabian Sea in summer through air-sea coupling from winter to summer, which causes an increase in the summer SMJ intensity. The anticyclone/high branch of the SAM over the Southern Hemisphere subtropics and the cyclone/low over the east coast of Madagascar play an important role in the formation of Southern Indian Ocean "bridge" from winter to summer.展开更多
The Southern Annular Mode(SAM)is the leading mode of atmospheric variability in the mid–high latitudes of the Southern Hemisphere,representing large-scale variations in pressure and the polar front jet(PFJ).In SAM ev...The Southern Annular Mode(SAM)is the leading mode of atmospheric variability in the mid–high latitudes of the Southern Hemisphere,representing large-scale variations in pressure and the polar front jet(PFJ).In SAM events,the combination of the SAM and other modes may result in different atmospheric patterns.In this study,a neural-network-based cluster technique,the self-organizing map,was applied to extract the distinct patterns of SAM events on the monthly time scale based on geopotential height anomalies at 500 hPa.Four pairs of distinguishable patterns of positive and negative SAM events were identified,representing the diversity in spatial distribution,especially the zonal symmetry of the center of action at high latitudes—that is,symmetric patterns,split-center patterns,West Antarctica patterns,and a tripole pattern.Although the SAM is well known to be beltshaped,within the selected SAM events,the occurrence frequency of symmetric patterns is only 23.8%—less than that of West Antarctica patterns.Diverse PFJ variations were found in the symmetric and asymmetric patterns of SAM events.The more asymmetric the spatial distribution of the pressure anomaly,the more localized the adjusted zonal wind anomaly.The adjusted PFJ varied in meridional displacement and strength in different patterns of SAM events.In addition,the entrance and exit of the jet changed in most of the patterns,especially in the asymmetric patterns,which might result in different climate impacts of the SAM.展开更多
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thicknes...This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.展开更多
There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemis...There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.展开更多
The variability in the Southern Ocean(SO) sea surface temperature(SST) has drawn increased attention due to its unique physical features; therefore, the temporal characteristics of the SO SST anomalies(SSTA) and...The variability in the Southern Ocean(SO) sea surface temperature(SST) has drawn increased attention due to its unique physical features; therefore, the temporal characteristics of the SO SST anomalies(SSTA) and their influence on extratropical atmospheric circulation are addressed in this study. Results from empirical orthogonal function analysis show that the principal mode of the SO SSTA exhibits a dipole-like structure, suggesting a negative correlation between the SSTA in the middle and high latitudes, which is referred to as the SO Dipole(SOD) in this study. The SOD features strong zonal symmetry, and could reflect more than 50% of total zonal-mean SSTA variability. We find that stronger(weaker) Subantarctic and Antarctic polar fronts are related to the positive(negative) phases of the SOD index, as well as the primary variability of the large-scale SO SSTA meridional gradient. During December–January–February, the Ferrel cell and the polar jet shift toward the Antarctic due to changes in the SSTA that could be associated with a positive phase of the SOD, and are also accompanied by a poleward shift of the subtropical jet. During June–July–August, in association with a positive SOD, the Ferrel cell and the polar jet are strengthened, accompanied by a strengthened subtropical jet. These seasonal differences are linked to the differences in the configuration of the polar jet and the subtropical jet in the Southern Hemisphere.展开更多
A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high-...A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.展开更多
The relationships of variations of sea surface temperature anomalies (SSTA) in the South Pacificwith ENSO and Southern Hemisphere Annular Mode (SAM) are examined in the present article byemploying the NCEP-NCAR reanal...The relationships of variations of sea surface temperature anomalies (SSTA) in the South Pacificwith ENSO and Southern Hemisphere Annular Mode (SAM) are examined in the present article byemploying the NCEP-NCAR reanalysis from 1951 to 2006. Two principal modes of South Pacific SSTA areobtained using the EOF (Empirical Orthogonal Function) analysis for austral winter (June, July and August).Our results suggest that EOF1 is closely related with ENSO and EOF2 links to SAM. The EOF1 varieslargely on an interannual and EOF2 on a decadal scale. The time series of coefficients of EOF1 is highlycorrelated simultaneously with Nino3 index. However, the time series of coefficients of EOF2 issignificantly correlated with the March-April-May mean SAM index. Both the EOF1 and EOF2 are found insignificant correlation to summer precipitation over China. With higher-than-normal SSTs in the easternSouth Pacific and simultaneously lower SSTs in the western South Pacific in June-July-August, thesummertime rainfall is found to be less than normal in northern China. As displayed in EOF2 of SSTA, inyears with lower-than-normal SSTs in mid-latitude southern and equatorial eastern Pacific andhigher-than-normal SSTs in the equatorial middle Pacific in March-April-May, the summer precipitation inAugust tends to be more than normal in regions south of Yangtze River.展开更多
The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the ...The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the climatic impacts of the SAM is a new research field that has developed rapidly in recent years. This paper reviews studies of the climatic impact of the SAM on the SH and the Northern Hemisphere (NH), emphasizing linkages between the SAM and climate in China. Studies relating the SAM to climate change are also discussed. A general survey of these studies have been systematically investigated. On interannual shows that signals of the SAM in the SH climate scales, the SAM can influence the position of storm tracks and the vertical circulation, and modulate the dynamic and thermodynamic driving effects of the surface wind on the underlying surface, thus influencing the SH air-sea-ice coupled system. These influences generally show zonally symmetrical characteristics, but with local features. On climate change scales, the impacts of the SAM on SH climate change show a similar spatial distribution to those on interannual scales. There are also meaningful results on the relationship between the SAM and the NH climate. The SAM is known to affect the East Asian, West African, and North American summer monsoons, as well as the winter monsoon in China. Air-sea interaction plays an important role in these connections in terms of the storage of the SAM signal and its propagation from the SH to the NH. However, compared with the considerable knowledge of the impact of the SAM on the SH climate, the response of the NH climate to the SAM deserves further study, including both a deep understanding of the propagation mechanism of the SAM signal from the SH to the NH and the establishment of a seasonal prediction model based on the SAM.展开更多
As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circul...As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circulation, and their variabilities substantially impact the climate in mid-high latitudes. A 35-yr(1979-2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences(CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data. The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM, relation of the NAM to the East Asian climate, and temporal variability of the SAM is examined and validated against the observational data. The results show that CAMS-CSM captures the zonally symmetric and out-of-phase variations of sea level pressure anomaly between the midlatitudes and polar zones in the extratropics of the NH and SH. The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies. Furthermore, the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies. The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia. It also captures the upward trend of the austral summer SAM index during recent decades. However, compared with the observation, the model shows biases in both the intensity and center locations of the NAM's and SAM's horizontal and vertical structures. Specifically, it overestimates their intensities.展开更多
基金The Key Research&Development Program of the Ministry of Science and Technology of China under contract No.2022YFC2807601the National Natural Science Foundation of China under contract Nos 41941008 and 41876221+3 种基金the Fund of Shanghai Science and Technology Committee under contract Nos 20230711100 and 21QA1404300the Impact and Response of Antarctic Seas to Climate Change funded by the Chinese Arctic and Antarctic Administration under contract No.IRASCC 1-02-01Bthe National Key Research and Development Program of China under contract No.2019YFC1509102the Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University under contract No.21TQ1400201。
文摘Antarctic coastal polynyas are biological hotspots in the Southern Ocean that support the abundance of hightrophic-level predators and are important for carbon cycling in the high-latitude oceans.In this study,we examined the interannual variation of summertime phytoplankton biomass in the Marguerite Bay polynya(MBP)in the western Antarctic Peninsula area,and linked such variability to the Southern Annular Mode(SAM)that dominated the southern hemisphere extratropical climate variability.Combining satellite data,atmosphere reanalysis products and numerical simulations,we found that the interannual variation of summer chlorophyll-a(Chl-a)concentration in the MBP is significantly and negatively correlated with the spring SAM index,and weakly correlated with the summer SAM index.The negative relation between summer Chl-a and spring SAM is due to weaker spring vertical mixing under a more positive SAM condition,which would inhibit the supply of iron from deep layers into the surface euphotic layer.The negative relation between spring mixing and spring SAM results from greater precipitation rate over the MBP region in positive SAM phase,which leads to lower salinity in the ocean surface layer.The coupled physical-biological mechanisms between SAM and phytoplankton biomass revealed in this study is important for us to predict the future variations of phytoplankton biomasses in Antarctic polynyas under climate change.
基金supported by the National Natural Science Foundation of China under Grant Nos.40631005 and 40620130113CAS International Partnership Project.
文摘The relationship between the North Asia cyclone (NAC) activity and the Southern Annular Mode (SAM) is documented in this research. The definition of the NAC index (NACI) is based on the atmospheric relative vorticity in North Asia. The analysis yields a significant positive correlation between previous winter Southern Annular Mode index (SAMI) and spring NACI in the interannual variability, with a correlation coefficient of 0.51 during 1948-2000. Analysis of the NAC-related and SAM-related atmospheric general circulation variability demonstrates such a relationship. The study further reveals that when the winter SAM becomes strong, the springtime atmospheric convection in tropical western Pacific will intensify and the local Hadley circulation will be strengthened. As a result, the abnormal subsiding motion over South China makes the temperature gradient intensified in the low level and strengthens the jet in the high level, both of which are beneficial to the development of NAC activity.
基金supported by the "Investigation of Climate Change Mechanism by Observation and Simulation of Polar Climate Change for the Past and Present" project (PE14010) of the KOPRIthe Special Project of Basic Science and Technology (2011FY120300)+1 种基金the Korea Meteorological Administration Research and Development Program under Grant CATER 2012-3061 (PN13010)supported by the Jiangsu Collaborative Innovation Center for Climate Change
文摘The increasing trend of the Southern Annular Mode (SAM) in recent decades has influenced climate change in the Southem Hemisphere (SH).How the SAM will respond increased greenhouse gas concentrations in the future remains uncertain.Understanding the variability of the SAM in the past under a colder climate such as during the Last Glacial Maximum (LGM) might provide some understanding of the response of the SAM under a future warmer climate.We analyzed the changes in the SAM during the LGM in comparison to pre-industrial (PI) simulations using five coupled ocean-atmosphere models (CCSM,FGOALS,IPSL,MIROC,HadCM) from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2).In CCSM,MIROC,IPSL,and FGOALS,the variability of the simulated SAM appears to be reduced in the LGM compared to the PI simulations,with a decrease in the standard deviation of the SAM index.Overall,four out of the five models suggest a weaker SAM amplitude in the LGM consistent with a weaker SH polar vortex and westerly winds found in some proxy records and model analyses.The weakening of the SAM in the LGM was associated with an increase in the vertical propagation of Rossby waves in southern high latitudes.
基金supported by the 973 Program (Grant No. 2013CB430203)the National Natural Science Foundation of China (Grant Nos. 41205046 and 41475076)the Australia–China Bilateral Climate Change Partnerships Program of Australian Department of Climate Change and Energy Efficiency
文摘This study examines the relationships among the monsoon-like southwest Australian circulation (SWAC), the South- ern Annular Mode (SAM), and southwest Western Australia winter rainfall (SWR), based on observed rainfall, reanalysis datasets, and the results of numerical modeling. By decomposing the SWAC into two components using a linear model, i.e. the component related to SAM (RSAM) and the component unrelated to SAM (SWACI*), we find it is the SWACI* that shows a significant influence on SWR. Similarly, it is the component of SAM associated with SWAC that exhibits an impact on SWR, whereas the component unrelated to SAM. A similar result is obtained in terms of the circulation associated with SWAC and the SAM. These facts suggest the SAM plays an indirect role in influencing SWR, and raise the possibility that SWAC acts as a bridge between the SAM and SWR, by which the SAM passes its influences onto SWR. This is due to the fact that the variations of SWAC are closely linked to the thermal contrast between land and sea across the southern Indian Ocean and southwest Australia. By contrast, the SAM does not significantly relate to this thermal structure, particularly for the component unrelated to SWAC. The variations of surface sea temperature over the southern Indian Ocean contribute to the favored rainfall circulation patterns. This finding is supported by the numerical modeling results. The strong coupling between SWAC and SWR may be instrumental for understanding the interactions between SWR and the southern Indian Ocean, and provides another perspective in examining the variations in SWR.
基金This work was jointly supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19070402)a National Key Research and Development Project(Grant No.2018YFA0606404)the National Natural Science Foundation of China(Grant Nos.41790474 and 41775090).
文摘The Southern Annular Mode(SAM)plays an important role in regulating Southern Hemisphere extratropical circulation.State-of-the-art models exhibit intermodel spread in simulating long-term changes in the SAM.Results from Atmospheric Model Intercomparison Project(AMIP)experiments from 28 models archived in CMIP5 show that the intermodel spread in the linear trend in the austral winter(June−July−August)SAM is significant,with an intermodel standard deviation of 0.28(10 yr)−1,larger than the multimodel ensemble mean of 0.18(10 yr)−1.This study explores potential factors underlying the model difference from the aspect of extratropical sea surface temperature(SST).Extratropical SST anomalies related to the SAM exhibit a dipole-like structure between middle and high latitudes,referred to as the Southern Ocean Dipole(SOD).The role of SOD-like SST anomalies in influencing the SAM is found in the AMIP simulations.Model performance in simulating the SAM trend is linked with model skill in reflecting the SOD−SAM relationship.Models with stronger linkage between the SOD and the SAM tend to simulate a stronger SAM trend.The explained variance is about 40%in the AMIP runs.These results suggest improved simulation of the SOD−SAM relationship may help reproduce long-term changes in the SAM.
基金supported by the National Natural Science Foundation of China (41175051 and 41101045)Plans to Graduate Research and Innovation Projects of Jiangsu Province Colleges and Universities (CXZZ13_0517)
文摘One of the major high-latitude circulation systems in the Southern Hemisphere is the Southern Annular Mode(SAM). Its effect on the Somali Jet(SMJ), which connects the Southern and Northern hemispheres, cannot be ignored. The present reported results show that time series of both the Southern Annular Mode Index(SAMI) during the preceding winter and the summertime Somali Jet intensity Index(SMJI) display a significant increasing trend and have similar interdecadal variation. The latter was rather strong around 1960, then became weaker up to the mid-1980 s, before starting to strengthen again. The lead-lag correlations of monthly mean SAMI with the following summertime SMJI showed significant positive correlations in November, December, and January. There are thus connections across two seasons between the SAM and the SMJ. The influence of the winter SAM on the summer SMJ was explored via analyses of SST anomalies in the Southern Indian Ocean. During strong(weak) SAM/SMJ years, the SST east of Madagascar is colder(warmer) while the SST west of Australia is warmer(colder), corresponding to the positive(negative) Southern Indian Ocean Dipole-like(SIODL) event. Subsequently, the SIODL excites an anticyclone located over the Arabian Sea in summer through air-sea coupling from winter to summer, which causes an increase in the summer SMJ intensity. The anticyclone/high branch of the SAM over the Southern Hemisphere subtropics and the cyclone/low over the east coast of Madagascar play an important role in the formation of Southern Indian Ocean "bridge" from winter to summer.
基金This work was jointly supported by the National Natural Science Foundation of China[grant numbers 42088101 and 42175019]Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies[grant number 2020B1212060025].
文摘The Southern Annular Mode(SAM)is the leading mode of atmospheric variability in the mid–high latitudes of the Southern Hemisphere,representing large-scale variations in pressure and the polar front jet(PFJ).In SAM events,the combination of the SAM and other modes may result in different atmospheric patterns.In this study,a neural-network-based cluster technique,the self-organizing map,was applied to extract the distinct patterns of SAM events on the monthly time scale based on geopotential height anomalies at 500 hPa.Four pairs of distinguishable patterns of positive and negative SAM events were identified,representing the diversity in spatial distribution,especially the zonal symmetry of the center of action at high latitudes—that is,symmetric patterns,split-center patterns,West Antarctica patterns,and a tripole pattern.Although the SAM is well known to be beltshaped,within the selected SAM events,the occurrence frequency of symmetric patterns is only 23.8%—less than that of West Antarctica patterns.Diverse PFJ variations were found in the symmetric and asymmetric patterns of SAM events.The more asymmetric the spatial distribution of the pressure anomaly,the more localized the adjusted zonal wind anomaly.The adjusted PFJ varied in meridional displacement and strength in different patterns of SAM events.In addition,the entrance and exit of the jet changed in most of the patterns,especially in the asymmetric patterns,which might result in different climate impacts of the SAM.
基金supported by the National Key Research and Development Project[grant number 2020YFA0608902]the Natural Science Foundation of Guangdong Province[grant number 2023A1515010889].
文摘This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds,decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Ni?o was associated with temperature increases over the central parts of southern Africa;while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.
基金supported by the China Special Fund for Meteorological Research in the Public Interest (Grant No.GYHY201506032)an NSFC project (Grant No.41405086)and a National Key R&D Program of China (Grant No.2016YFA0601801)
文摘There is increasing evidence of the possible role of extratropical forcing in the evolution of ENSO. The Southern Hemi- sphere Annular Mode (SAM) is the dominant mode of atmospheric circulation in the Southern Hemisphere extratropics. This study shows that the austral summer (December-January-February; DJF) SAM may also influence the amplitude of ENSO decay during austral autumn (March-April-May; MAM). The mechanisms associated with this SAM-ENSO relationship can be briefly summarized as follows: The SAM is positively (negatively) correlated with SST in the Southern Hemisphere middle (high) latitudes. This dipole-like SST anomaly pattern is referred to as the Southern Ocean Dipole (SOD). The DJF SOD, caused by the DJF SAM, could persist until MAM and then influence atmospheric circulation, including trade winds, over the Nifio3.4 area. Anomalous trade winds and SST anomalies over the Nifio3.4 area related to the DJF SAM are further developed through the Bjerkness feedback, which eventually results in a cooling (warming) over the Nifio3.4 area followed by the positive (negative) DJF SAM.
基金supported by a National Natural Science Foundation of China NSFC project (Grant No. 41405086)the strategic priority research program grant of the Chinese Academy of Sciences (Grant No. XDA19070402)the NSFC projects (41775090, 41705049)
文摘The variability in the Southern Ocean(SO) sea surface temperature(SST) has drawn increased attention due to its unique physical features; therefore, the temporal characteristics of the SO SST anomalies(SSTA) and their influence on extratropical atmospheric circulation are addressed in this study. Results from empirical orthogonal function analysis show that the principal mode of the SO SSTA exhibits a dipole-like structure, suggesting a negative correlation between the SSTA in the middle and high latitudes, which is referred to as the SO Dipole(SOD) in this study. The SOD features strong zonal symmetry, and could reflect more than 50% of total zonal-mean SSTA variability. We find that stronger(weaker) Subantarctic and Antarctic polar fronts are related to the positive(negative) phases of the SOD index, as well as the primary variability of the large-scale SO SSTA meridional gradient. During December–January–February, the Ferrel cell and the polar jet shift toward the Antarctic due to changes in the SSTA that could be associated with a positive phase of the SOD, and are also accompanied by a poleward shift of the subtropical jet. During June–July–August, in association with a positive SOD, the Ferrel cell and the polar jet are strengthened, accompanied by a strengthened subtropical jet. These seasonal differences are linked to the differences in the configuration of the polar jet and the subtropical jet in the Southern Hemisphere.
基金The National Natural Science Foundation of China under contract No.41206186the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract No.2015-04-03
文摘A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm (developed by Hodges at the Reading University) for an improved and relatively high- resolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979-2013. A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product. The climatological characteristics of the Southern Ocean cyclones are then analyzed, including track, number, density, intensity, deepening rate and explosive events. An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979-2013, but only statistically significant in summer. Coincident with the circumpolar trough, a single high-density band of cyclones is observed in 55^-67~S, and cyclone density has generally increased in north of this band for 1979-2013, except summer. The intensity of up to 70% cyclones in the Southern Ocean is less than 980 hPa, and only a few cyclones with pressure less than 920 hPa are detected for 1979-2013. Further analysis shows that a high frequency of explosive cyclones is located in the band of 45^-55~S, and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector. Additionally, the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.
基金Natural Science Foundation of China(41105056,41175062)"Qinglan"Project of Jiangsu Province for Activating Research TeamsPriority Academic Program Development of Jiangsu Province Higher Education Institutions
文摘The relationships of variations of sea surface temperature anomalies (SSTA) in the South Pacificwith ENSO and Southern Hemisphere Annular Mode (SAM) are examined in the present article byemploying the NCEP-NCAR reanalysis from 1951 to 2006. Two principal modes of South Pacific SSTA areobtained using the EOF (Empirical Orthogonal Function) analysis for austral winter (June, July and August).Our results suggest that EOF1 is closely related with ENSO and EOF2 links to SAM. The EOF1 varieslargely on an interannual and EOF2 on a decadal scale. The time series of coefficients of EOF1 is highlycorrelated simultaneously with Nino3 index. However, the time series of coefficients of EOF2 issignificantly correlated with the March-April-May mean SAM index. Both the EOF1 and EOF2 are found insignificant correlation to summer precipitation over China. With higher-than-normal SSTs in the easternSouth Pacific and simultaneously lower SSTs in the western South Pacific in June-July-August, thesummertime rainfall is found to be less than normal in northern China. As displayed in EOF2 of SSTA, inyears with lower-than-normal SSTs in mid-latitude southern and equatorial eastern Pacific andhigher-than-normal SSTs in the equatorial middle Pacific in March-April-May, the summer precipitation inAugust tends to be more than normal in regions south of Yangtze River.
基金jointly supported by a Strategic Project of the Chinese Academy of Sciences[grant number XDA19070402]the National Natural Science Foundation of China[grant number 41790473]the Post-doctoral Innovation Foundation of Hubei Province。
基金Supported by the National Basic Research and Development(973)Program of China(2013CB430200)National Natural Science Foundation of China(41030961)China Meteorological Administration Special Public Welfare Research Fund(GYHY201306031)
文摘The Southern Hemisphere (SH) annular mode (SAM) is the dominant mode of atmospheric circulation in the SH extratropics. The SAM regulates climate in many regions due to its large spatial scale. Exploration of the climatic impacts of the SAM is a new research field that has developed rapidly in recent years. This paper reviews studies of the climatic impact of the SAM on the SH and the Northern Hemisphere (NH), emphasizing linkages between the SAM and climate in China. Studies relating the SAM to climate change are also discussed. A general survey of these studies have been systematically investigated. On interannual shows that signals of the SAM in the SH climate scales, the SAM can influence the position of storm tracks and the vertical circulation, and modulate the dynamic and thermodynamic driving effects of the surface wind on the underlying surface, thus influencing the SH air-sea-ice coupled system. These influences generally show zonally symmetrical characteristics, but with local features. On climate change scales, the impacts of the SAM on SH climate change show a similar spatial distribution to those on interannual scales. There are also meaningful results on the relationship between the SAM and the NH climate. The SAM is known to affect the East Asian, West African, and North American summer monsoons, as well as the winter monsoon in China. Air-sea interaction plays an important role in these connections in terms of the storage of the SAM signal and its propagation from the SH to the NH. However, compared with the considerable knowledge of the impact of the SAM on the SH climate, the response of the NH climate to the SAM deserves further study, including both a deep understanding of the propagation mechanism of the SAM signal from the SH to the NH and the establishment of a seasonal prediction model based on the SAM.
基金Supported by the National Natural Science Foundation of China(41775084 and 41405102)National Key Research and Development Program of China(2018YFC1505706)Basic Research Special Project of Chinese Academy of Meteorological Sciences(2019Z008)
文摘As leading modes of the planetary-scale atmospheric circulation in the extratropics, the Northern Hemisphere(NH)annular mode(NAM) and Southern Hemisphere(SH) annular mode(SAM) are important components of global circulation, and their variabilities substantially impact the climate in mid-high latitudes. A 35-yr(1979-2013) simulation by the climate system model developed at the Chinese Academy of Meteorological Sciences(CAMS-CSM) was carried out based on observed sea surface temperature and sea ice data. The ability of CAMS-CSM in simulating horizontal and vertical structures of the NAM and SAM, relation of the NAM to the East Asian climate, and temporal variability of the SAM is examined and validated against the observational data. The results show that CAMS-CSM captures the zonally symmetric and out-of-phase variations of sea level pressure anomaly between the midlatitudes and polar zones in the extratropics of the NH and SH. The model has also captured the equivalent barotropic structure in tropospheric geopotential height and the meridional shifts of the NH and SH jet systems associated with the NAM and SAM anomalies. Furthermore, the model is able to reflect the variability of northern and southern Ferrel cells corresponding to the NAM and SAM anomalies. The model reproduces the observed relationship of the boreal winter NAM with the East Asian trough and air temperature over East Asia. It also captures the upward trend of the austral summer SAM index during recent decades. However, compared with the observation, the model shows biases in both the intensity and center locations of the NAM's and SAM's horizontal and vertical structures. Specifically, it overestimates their intensities.