The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to...The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.展开更多
Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we r...Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga).展开更多
The southern highlands zone of Tanzania is the one of the most potential area for agriculture contributes up to 46% of the total country’s maize production. However, the rate of maize production tends to decrease wit...The southern highlands zone of Tanzania is the one of the most potential area for agriculture contributes up to 46% of the total country’s maize production. However, the rate of maize production tends to decrease with time due of poor agronomic practices. The aim of this study was to simulate the effect of nitrogen dose and plant spacing on grain yields from five selected maize varieties. Decision Support System for Agrotechnology transfer crop model was used for this purpose. Based on the agroecological zones, six sites were selected which includes Ihumbu farm, Mwazye and Nyera Estate Mbozi, Lupa Tinga Tinga, Santilya and Mbinga. Maize varieties H614, Kitumani Composite I, H511, H626 and H612;Spacing (90 × 30 cm and 60 × 30 cm) and nitrogen dose (0, 50, 100, 150 and 200 kg/ha) were simulated. It was found that only H614 (4610.9 kg/ha) and Kitumani Composite I (3998.7 kg/ha) maize varieties performed well at the spacing of 60 × 30 cm and up to the nitrogen dose of 150 kg/ha. Therefore the two maize varieties H614 and Kitumani Composite I could be recommended for cultivation at the spacing of 60 × 30 cm and nitrogen dose of 150 kg/ha for improving production of maize in southern highland of Tanzania.展开更多
Together as well as in and of themselves, these two new books represent a major contribution to research on the Southern reaches of the Chinese empire in ancient times. The sophisticated, in-depth treatment of relatio...Together as well as in and of themselves, these two new books represent a major contribution to research on the Southern reaches of the Chinese empire in ancient times. The sophisticated, in-depth treatment of relations between Chinese centers and southern peripheries is a welcome development that both supplements and illuminates research on the northern heartland of the Chinese empires.展开更多
基金funded by the Natural Science Foundation of Hubei Province(2022CFB260,2021CFB508)the National Natural Science Foundation of China(No.42074007No.42130101).
文摘The Southern Highland Fold and Thrust Belt(SHFTB),the boundary of the Australian plate and the New Guinea Highland block,significantly contributes to the convergent deformation along the plate bound-ary.However,due to the lack of observation data,the detailed slip pattern of the SHFTB and the orogenic mechanism beneath the New Guinea Highlands remains controversial.On 25 February 2018,the M_(w)7.5 Papua New Guinea(PNG)earthquake struck the southeastern segment of the SHFTB.The detailed rupture characteristics of this event is significant for further clarifying the inter-seismic slip pattern along the SHFTB.Here,the coseismic deformation field of this earthquake was obtained using high-resolution ALOS-2 satellite images.We find that the 2018 M_(w)7.5 PNG earthquake ruptured a large-scaled fault(SHFTB)extending to the lower crust(deeper than 20 km)beneath the New Guinea Highlands,with a dip angle of 24°.The slips on the fault plane are equivalent to moment magnitudes of M_(w)7.51.Three major asperities with thrust-dominated slip of up to 3.94 m are detected on the fault plane.This finding implies that the slip pattern on the eastern segment of the SHFTB is dominated by thrust,rather than with significant sinistral movement,as previously reported.The tectonic deformation across the New Guinea Highlands is possibly concentrated on the large-scale fault SHFTB and primarily controls the intra-continental orogeny in the central Papua New Guinea.
基金supported by JSPS KAKENHI(Grant-in-Aid for Scientific Research on Innovative Areas) Grant No. 26106002 (Hadean Bio-Science)
文摘Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga).
文摘The southern highlands zone of Tanzania is the one of the most potential area for agriculture contributes up to 46% of the total country’s maize production. However, the rate of maize production tends to decrease with time due of poor agronomic practices. The aim of this study was to simulate the effect of nitrogen dose and plant spacing on grain yields from five selected maize varieties. Decision Support System for Agrotechnology transfer crop model was used for this purpose. Based on the agroecological zones, six sites were selected which includes Ihumbu farm, Mwazye and Nyera Estate Mbozi, Lupa Tinga Tinga, Santilya and Mbinga. Maize varieties H614, Kitumani Composite I, H511, H626 and H612;Spacing (90 × 30 cm and 60 × 30 cm) and nitrogen dose (0, 50, 100, 150 and 200 kg/ha) were simulated. It was found that only H614 (4610.9 kg/ha) and Kitumani Composite I (3998.7 kg/ha) maize varieties performed well at the spacing of 60 × 30 cm and up to the nitrogen dose of 150 kg/ha. Therefore the two maize varieties H614 and Kitumani Composite I could be recommended for cultivation at the spacing of 60 × 30 cm and nitrogen dose of 150 kg/ha for improving production of maize in southern highland of Tanzania.
文摘Together as well as in and of themselves, these two new books represent a major contribution to research on the Southern reaches of the Chinese empire in ancient times. The sophisticated, in-depth treatment of relations between Chinese centers and southern peripheries is a welcome development that both supplements and illuminates research on the northern heartland of the Chinese empires.