A grid of 22 stations, giving a broad coverage of the spawning ground of anchovy in the southern Huanghai Sea was selected. Undis- turbed sediments were taken from sampling stations during the cruise in June 2003. The...A grid of 22 stations, giving a broad coverage of the spawning ground of anchovy in the southern Huanghai Sea was selected. Undis- turbed sediments were taken from sampling stations during the cruise in June 2003. The average abundance of meiofauna is (1 584± 686) ind./10cm2, with corresponding biomass (dwt) of (1 086±425)!μg/10cm2. The pattern of abundance of meiofauna is similar to the pattern of biomass. There are 65.88% meiofauna in 0 ̄2 cm sediments, 27.66% in 2 ̄5 cm sediments and 6.47% in 5 ̄8 cm sediments. The Spearman correlation analysis between meiofauna and environmental factors shows that abundance of meiofauna, free living ma- rine nematodes, benthic copepods has significant positive correlations with Chl-a. And the abundance of copepods has significant posi- tive correlations with several factors such as Chl-a, Pha-a, Chl-a plus Pha-a and organic matter. A total of 18 meiofauna groups are i- dentified. Nematode is the most dominant group, average abundance (1 404±670) ind/10cm2, accounting for 88.65%, and the follow- ing groups are also important: benthic copepods (5.48%), kinorhyncha (1.26%), polychaeta (1.07%). By biomass, dominant groups are nematodes (51.72%), polychaeta (21.84%), copepods (14.87%), ostracoda (4.92%), kinorhyncha (3.67%). A total of 90 species of ne- matodes are identified. The species composition of nematodes is listed based on selected two stations 7794 (coastal area) and 10694 (cold water mass in deep waters).展开更多
Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution featu...Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).展开更多
The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, a...The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, and those of SAEF-N northward, while those of WAEF-N westward. Around the seaport of the old Huanghe (Yellow) River, the contents of both SOEF-N and TN are the highest. Among all the factors, the content of fine sediment is the predominant factor to affect the distributions of different forms of nitrogen. The contents of IEF-N, SOEF-N, and TN have visibly positive correlation with the content of fine sediments, and the correlative coefficient is 0.68, 0.58 and 0.71 respectively, showing that the contents of the three forms of nitrogen increase with those of fine sediments. The content of WAEF-N is related to that of fine sediments to a certain extent, with a correlative coefficient of 0.35; while the content of SAEF-N is not related to that of fine sediments, showing that the content of SAEF-N is not controlled by fine grain-size fractions of sediments. In addition, the distributions of different forms of nitrogen are also interacted one another, and the contents of IEF-N and SOEF-N are obviously affected by TN, while those of inorganic nitrogen (WAEF-N, SAEF-N and IEF-N) are not affected by SOEF-N and TN obviously, although they are interacted each other.展开更多
Free-living marine nematodes were sampled and studied at a grid of 22 stations (from 32°29.35′ to 37°0.56′N, 122°0.37′ to 125°1.16′ E) in the southern Huanghai Sea in January 2003. Nematode a...Free-living marine nematodes were sampled and studied at a grid of 22 stations (from 32°29.35′ to 37°0.56′N, 122°0.37′ to 125°1.16′ E) in the southern Huanghai Sea in January 2003. Nematode abundance varied from 50.5 to 127.2 ind./cm^2 [(83.1 ±24.7) ind./cm^2] at different stations, 80.1% of the total nematodes were in the surface layer (0-2 cm) of sediments. Two hundred and twenty-three species or taxa of marine nematodes belonging to 145 genera, 32 families and four orders were identified and first recorded in the Huanghai Sea. The common dominant species were Dorylaimopsis rabalaisi, Terschellingia longicaudata, Sphaerolaimus bolticus, Metalinhomoeus longiseta, Quadricoma scanica, Prochromadorella sp., Paramonohystera riemanni, Marylynnia sp. 1, Vasostoma spircaum, Halalaimus spp., Pierrickia sp. 1 and Promonhystera faber. Nematode diversity was correlated with sediment granularity. Pearson correlation analysis showed that Shannon-Wiener index had highly significant positive correlation with a sand content and negative correlation with a silt-clay content (P〈0.01); species richness index (d) had significant positive correlation with the sand content and negative correlation with the silt-clay content (P〈0.05). The diversity of the southern Huanghai Sea was lower than that in the center of Bohai Sea, but the dominance was higher.展开更多
On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed b...On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed by using the modified inverse method. The comparison between the two computed results in the first cruise, which was carried out from June 4 to 19, 1999 on board R/V Xiangyanghong 14, China, and in the second cruise is made. The following results have been obtained. (1) Part of the Kuroshio flows northward through the eastern part of Section E, and its volume transport(VT) is about 6.2×106 m3/s,and its maximum velocity is about 93 cm/s.This shows that most of the Kuroshio flows northward through the region east of Section E.The VT of the offshore branch of Taiwan Warm Current west of the Kuroshio through Section E is about 0.4×106 m3/s. (2) There is the following variability between these two cruises, whose time difference is about two weeks:① The position of the Kuroshio in the second cruise is slightly more east than that in the first cruise; ②The high-density water (HDW) with a cold water occurs in the region south of Cheju Island between 125°30' and 127°E at Sections D and C. The circulation in the region of HDW is cyclonic. Comparing the position of HDW during the second cruise with that during the first cruise,it is found that its position in the second cruise moves slightly northward.(3) The cold and uniform mixing layer occurs in the layer from the 30 m level to the bottom of the middle part of Section A and in the layer from the 20 m level to the bottom of the middle part of Section B,respectively.They are both the southern part of the Huanghai Sea Cold Water Mass (HSCWM). (4) There are higher temperature and lower density with a weaker anticyclonic circulation in the southwestern part of the computed region.Its center is located at the westernmost point of Section E.展开更多
The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and ...The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .展开更多
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermo...Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.展开更多
During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Syne...During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Synechococcus (Syn), Picoeukaryotes (PEuk) and heterotrophic bacteria (BAC) were identified, but Prochlorococcus (Pro) was undetected. The average abundance of Syn and PEuk was lower in spring (5.0 and 1.3×10^3 cells/cm^3, respectively) than in autumn (92.4 and 2.7×0^3 cells/cm^3, respectively), but it was opposite for BAC (1.3 and 0.7×10^6 cells/cm^3 in spring and autumn, respectively). And the total carbon biomass of picoplankton was higher in spring (37.23×11.67) mg/m^3 than in autumn (21.29×13.75) mg/m^3. The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn, respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn, respectively. Seasonal distribution characteristics of Syn, PEuk, BAC were quite different from each other. In spring, Syn abundance decreased in turn in the central waters (where phytoplankton bloom in spring occurred), the southern waters and inshore waters of the Shandong Peninsula (where even Syn was undetected); the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula; the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton, and high values appeared in the central waters. In autumn, Syn abundance in central waters was higher than that in surrounding waters, while for PEuk abundance, it decreased in turn in the inshore waters of the Shandong Peninsula, the southern waters and the central waters; BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available lit- eratures concerning the studied area, the range of Syn abundance was larger, and the abundance of BAC was higher. In addition, the conversion factors for calculating picoplanktonic carbon biomass were discussed, with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring (r=0.61, P 〈0.001), but no correlation was found in autumn.展开更多
On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East Chin...On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2 x 10(6) m(3)/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4 x 10(6) m(3)/s. The Taiwan Warm Current (TWC) has much effect on the currents over the continental shelf. The Huanghai Sea Coastal Current (HSCC) flows southeastward and enters into the northwestern part of investigated region, and flows to turn cyclonically, and then it flows northeastward, due to the influences of the Taiwan Warm Current and topography. There is a cyclonic eddy south of Cheju Island where the Huanghai Sea Coastal Current flows to turn cyclonically. It has the feature of high dense and cold water. The uniform and cold water is occurred in the layer from about 30 m level to the bottom between Stations C306 and C311 at the northernmost Section C3. It is a southern part of the Huanghai Sea Cold Water Mass (HSCWM).展开更多
Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Ye...Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.展开更多
基金supported by the National Key Basic Research Programs from Ministry of Science and Technology of China under contract Nos G1999043709 and 2002CB412400the National Natural Science Foundation of China under contract No.40176033.
文摘A grid of 22 stations, giving a broad coverage of the spawning ground of anchovy in the southern Huanghai Sea was selected. Undis- turbed sediments were taken from sampling stations during the cruise in June 2003. The average abundance of meiofauna is (1 584± 686) ind./10cm2, with corresponding biomass (dwt) of (1 086±425)!μg/10cm2. The pattern of abundance of meiofauna is similar to the pattern of biomass. There are 65.88% meiofauna in 0 ̄2 cm sediments, 27.66% in 2 ̄5 cm sediments and 6.47% in 5 ̄8 cm sediments. The Spearman correlation analysis between meiofauna and environmental factors shows that abundance of meiofauna, free living ma- rine nematodes, benthic copepods has significant positive correlations with Chl-a. And the abundance of copepods has significant posi- tive correlations with several factors such as Chl-a, Pha-a, Chl-a plus Pha-a and organic matter. A total of 18 meiofauna groups are i- dentified. Nematode is the most dominant group, average abundance (1 404±670) ind/10cm2, accounting for 88.65%, and the follow- ing groups are also important: benthic copepods (5.48%), kinorhyncha (1.26%), polychaeta (1.07%). By biomass, dominant groups are nematodes (51.72%), polychaeta (21.84%), copepods (14.87%), ostracoda (4.92%), kinorhyncha (3.67%). A total of 90 species of ne- matodes are identified. The species composition of nematodes is listed based on selected two stations 7794 (coastal area) and 10694 (cold water mass in deep waters).
文摘Chlorophyll a (Chl a) concentration and primary productivity (PP), namely, carbon fixed strength of phytoplankton along four transects in the southern Huanghai Sea (SHS) were studied for their distribution features and controlling mechanisms based on the investigations from 17 October to 3 November 2005. The Chl a concentration in the study waters dynamically changed spatially. Surface Chl a concentrations ranged from 0.11 to 2.38 mg/m^3 with higher and lower values observed in the nutrient-laden inshore waters and central part of the SHS occupied by oligotrophic current, respectively. The vertical distribution of Chl a concentration showed a predominant pattern of subsurface concentration maximum profile. It followed the previous result of the deep dissolved oxygen concentration maximum profile, which was significantly correlated with phytoplankton and regional water mass. The primary productivity of carbon in autumn of the SHS, ranging from 95 to 1 634 rag/( m^2· d) mainly varied with nutrient condition, especially phosphate concentration in seawater and hydrological condition. Furthermore, associating the present study results together with previous studies, the annual value of carbon fixed production of phytoplankton in the entire marginal seas of East China (including the Bohai Sea, the Huanghai Sea and the East China Sea) was estimated to be 222 Mt, which accounted for 2% of that in the global margins. Besides, it was as 16.2 times as the annual value of apparent carbon sink strength ( 13.96 Mt) in the marginal seas of East China. This multiple was different in different sea areas ( 3.0 in the Bohai Sea, 6. 7 in the Huanghai Sea and 81.6 in the East China Sea).
文摘The distributions of different forms of nitrogen in the surface sediments of the southern Huanghai Sea are different and affected by various factors. The contents of IEF-N, SOEF-N and TN gradually decrease eastward, and those of SAEF-N northward, while those of WAEF-N westward. Around the seaport of the old Huanghe (Yellow) River, the contents of both SOEF-N and TN are the highest. Among all the factors, the content of fine sediment is the predominant factor to affect the distributions of different forms of nitrogen. The contents of IEF-N, SOEF-N, and TN have visibly positive correlation with the content of fine sediments, and the correlative coefficient is 0.68, 0.58 and 0.71 respectively, showing that the contents of the three forms of nitrogen increase with those of fine sediments. The content of WAEF-N is related to that of fine sediments to a certain extent, with a correlative coefficient of 0.35; while the content of SAEF-N is not related to that of fine sediments, showing that the content of SAEF-N is not controlled by fine grain-size fractions of sediments. In addition, the distributions of different forms of nitrogen are also interacted one another, and the contents of IEF-N and SOEF-N are obviously affected by TN, while those of inorganic nitrogen (WAEF-N, SAEF-N and IEF-N) are not affected by SOEF-N and TN obviously, although they are interacted each other.
文摘Free-living marine nematodes were sampled and studied at a grid of 22 stations (from 32°29.35′ to 37°0.56′N, 122°0.37′ to 125°1.16′ E) in the southern Huanghai Sea in January 2003. Nematode abundance varied from 50.5 to 127.2 ind./cm^2 [(83.1 ±24.7) ind./cm^2] at different stations, 80.1% of the total nematodes were in the surface layer (0-2 cm) of sediments. Two hundred and twenty-three species or taxa of marine nematodes belonging to 145 genera, 32 families and four orders were identified and first recorded in the Huanghai Sea. The common dominant species were Dorylaimopsis rabalaisi, Terschellingia longicaudata, Sphaerolaimus bolticus, Metalinhomoeus longiseta, Quadricoma scanica, Prochromadorella sp., Paramonohystera riemanni, Marylynnia sp. 1, Vasostoma spircaum, Halalaimus spp., Pierrickia sp. 1 and Promonhystera faber. Nematode diversity was correlated with sediment granularity. Pearson correlation analysis showed that Shannon-Wiener index had highly significant positive correlation with a sand content and negative correlation with a silt-clay content (P〈0.01); species richness index (d) had significant positive correlation with the sand content and negative correlation with the silt-clay content (P〈0.05). The diversity of the southern Huanghai Sea was lower than that in the center of Bohai Sea, but the dominance was higher.
基金This work is supported by the National Natural Sci-ence Foundation of China under contract No.401 76007 and 49736200the Major State Basic Research Pro-gram of China under contract No.G 1999043802.
文摘On the basis of the hydrographic data obtained from June 17 to 25, 1999 on board R/V Eardo , Korea (hereafter'the second cruise'), the circulation in the southern Huanghai Sea and East China Sea is computed by using the modified inverse method. The comparison between the two computed results in the first cruise, which was carried out from June 4 to 19, 1999 on board R/V Xiangyanghong 14, China, and in the second cruise is made. The following results have been obtained. (1) Part of the Kuroshio flows northward through the eastern part of Section E, and its volume transport(VT) is about 6.2×106 m3/s,and its maximum velocity is about 93 cm/s.This shows that most of the Kuroshio flows northward through the region east of Section E.The VT of the offshore branch of Taiwan Warm Current west of the Kuroshio through Section E is about 0.4×106 m3/s. (2) There is the following variability between these two cruises, whose time difference is about two weeks:① The position of the Kuroshio in the second cruise is slightly more east than that in the first cruise; ②The high-density water (HDW) with a cold water occurs in the region south of Cheju Island between 125°30' and 127°E at Sections D and C. The circulation in the region of HDW is cyclonic. Comparing the position of HDW during the second cruise with that during the first cruise,it is found that its position in the second cruise moves slightly northward.(3) The cold and uniform mixing layer occurs in the layer from the 30 m level to the bottom of the middle part of Section A and in the layer from the 20 m level to the bottom of the middle part of Section B,respectively.They are both the southern part of the Huanghai Sea Cold Water Mass (HSCWM). (4) There are higher temperature and lower density with a weaker anticyclonic circulation in the southwestern part of the computed region.Its center is located at the westernmost point of Section E.
基金The National Natural Science Foundation of China under contract No.30490233the National Basic Research Program ("973"Program) of China under contract Nos2006CB400608 and 2005CB422306
文摘The spatial and temporal characteristics of trophic structure of fish communities in the southern Huanghai Sea were examined based on the data sampled from bottom trawl surveys conducted during the autumn of 2000 and the spring of 2001. Hierarchical agglomerative cluster method and bootstrap randomization were used to identify significant trophic groups for each fish assemblage in the southern Huanghai Sea. A total of six major trophic groups were identified within this system, which classified predators based upon location in the water column or prey size ( i. e. , benthic to pelagic predators or fish to small invertebrate prey predators). The similarity level used to identify significant trophic groups in each assemblage ranged from 24% to 34%. Although planktivores were the dominant trophic group in each assemblage (60% - 79% ), there were spatial and temporal variations in the trophic structure, which reflected the differences in the abundance and availability of dominant preys. Simplified food webs were constructed to evaluate the most important trophic relationships between the dominant prey taxa and the fishes in each assemblage within this system. Although there were some differences in the key prey species among different food webs, pelagic prey items (mainly euphausiids and copepods) represent the most important energetic link between primary producers and higher trophic level predators. The trophic level for most fishes was between 3 and d, and the weighted mean trophic level for each assemblage ranged from 3.3 to 3.4. Compared with previous study in the mid-1980s, there was an obvious downward trend in the trophic level for most fish species, which resulted mainly from the fluctuation in key prey species in the Huanghai Sea. The decrease in the importance of Japanese anchovy seems to be offset by other abundant prey species such as Euphausia pacifica and copepods ( mainly Calanus sinicus ) .
基金The Naval Oceanographic Office,Office of Naval Research,and Naval Postgraduate School
文摘Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.
基金The National Basic Research Program of China under contract No. 2006CB400605the scientific research fund of the Second Institute of Oceanography,SOA under contract No. JG0919
文摘During spring and autumn of 2006, the investigations on abundance, carbon biomass and distri- bution of picoplankton were carried out in the southern Huanghai Sea (Yellow Sea, sHS). Three groups of picoplankton-Synechococcus (Syn), Picoeukaryotes (PEuk) and heterotrophic bacteria (BAC) were identified, but Prochlorococcus (Pro) was undetected. The average abundance of Syn and PEuk was lower in spring (5.0 and 1.3×10^3 cells/cm^3, respectively) than in autumn (92.4 and 2.7×0^3 cells/cm^3, respectively), but it was opposite for BAC (1.3 and 0.7×10^6 cells/cm^3 in spring and autumn, respectively). And the total carbon biomass of picoplankton was higher in spring (37.23×11.67) mg/m^3 than in autumn (21.29×13.75) mg/m^3. The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn, respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn, respectively. Seasonal distribution characteristics of Syn, PEuk, BAC were quite different from each other. In spring, Syn abundance decreased in turn in the central waters (where phytoplankton bloom in spring occurred), the southern waters and inshore waters of the Shandong Peninsula (where even Syn was undetected); the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula; the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton, and high values appeared in the central waters. In autumn, Syn abundance in central waters was higher than that in surrounding waters, while for PEuk abundance, it decreased in turn in the inshore waters of the Shandong Peninsula, the southern waters and the central waters; BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available lit- eratures concerning the studied area, the range of Syn abundance was larger, and the abundance of BAC was higher. In addition, the conversion factors for calculating picoplanktonic carbon biomass were discussed, with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring (r=0.61, P 〈0.001), but no correlation was found in autumn.
基金National Natural Science Foundation of China under contract No. 40176007Major State Basic Research Program of China under contract No.G 1999043802.
文摘On the basis of hydrographic data and current measurement (the mooring system, vessel-mounted ADCP and toward ADCP) data obtained in June 1999, the circulations in the southern Huanghai Sea (HS) and northern East China Sea (ECS) are computed by using the modified inverse method. The Kuroshio flows northeastward through eastern part of the investigated region and has the main core at Section PN, a northward flow at the easternmost part of Section PN, a weaker anti-cyclonic eddy between these two northward flows, and a weak cyclonic eddy at the western part of Section PN. The above current structure is one type of the current structures at Section PN in ECS. The net northward volume transport (VT) of the Kuroshio and the offshore branch of Taiwan Warm Current (TWCOB) through Section PN is about 26.2 x 10(6) m(3)/s in June 1999. The VT of the inshore branch of Taiwan Warm Current (TWCIB) through the investigated region is about 0.4 x 10(6) m(3)/s. The Taiwan Warm Current (TWC) has much effect on the currents over the continental shelf. The Huanghai Sea Coastal Current (HSCC) flows southeastward and enters into the northwestern part of investigated region, and flows to turn cyclonically, and then it flows northeastward, due to the influences of the Taiwan Warm Current and topography. There is a cyclonic eddy south of Cheju Island where the Huanghai Sea Coastal Current flows to turn cyclonically. It has the feature of high dense and cold water. The uniform and cold water is occurred in the layer from about 30 m level to the bottom between Stations C306 and C311 at the northernmost Section C3. It is a southern part of the Huanghai Sea Cold Water Mass (HSCWM).
基金The National Offshore Comprehensive Marine Investigation and Assessment Project under contract No.908-01-ST03the National Key Basic Research Project under contract No.2010CB428703+1 种基金the Fundamental Research Funds for the First Institute of Oceanography under contract No.GY02-2010T05the China-Korea Cooperative Research on the Yellow Sea Cold Water Mass
文摘Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.