The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
Objective The Qinling Mountains (QM) in Central China is a natural harrier that corresponds to the boundary between the southern and northern climate and environment (Gong Hujun et al., 2017). Northern QM is rela...Objective The Qinling Mountains (QM) in Central China is a natural harrier that corresponds to the boundary between the southern and northern climate and environment (Gong Hujun et al., 2017). Northern QM is relatively steep, and southern QM is in contrast relatively low and gentle. Investigations have shown that the average uplift rate of northern QM since 17.8 Ma is approximately 0.19 mm/a (Yin Gongming et al., 2001), whereas that of central QM since 0.36 Ma is approximately 0.32 mm/a (Wang Fei et al., 2004). To date, however, few investigations have yet been conducted on the uplift rate of southern QM. Accordingly, we aim to obtain the uplift rate of southern QM by using the cosmogenic ^26A1/^10 Be burial dating method to determine the age of the highest river terrace on the southern slope of QM.展开更多
The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern ...The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.展开更多
Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone ...Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone of later Paleozoic era. Typical disseminated gold mineralization occurred in calcareous siltstone, which is major host rock and mainly composed of silt (SiO2 mostly varies from 38% to 73%) and calcite (CaO mostly varies from 10% to 25%). Pyrite created by living beings in Nanyangshan formation may be poor in gold. Faults and favorable layers jointly control disseminated gold mineralization. The significance of this opinion is very great for gold exploration.展开更多
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
基金supported by the National Natural Science Foundation of China(grants No.41572155 and 41690111)the Global Change Program of the Ministry of Science and Technology of China(grant No.2016YFA0600503)
文摘Objective The Qinling Mountains (QM) in Central China is a natural harrier that corresponds to the boundary between the southern and northern climate and environment (Gong Hujun et al., 2017). Northern QM is relatively steep, and southern QM is in contrast relatively low and gentle. Investigations have shown that the average uplift rate of northern QM since 17.8 Ma is approximately 0.19 mm/a (Yin Gongming et al., 2001), whereas that of central QM since 0.36 Ma is approximately 0.32 mm/a (Wang Fei et al., 2004). To date, however, few investigations have yet been conducted on the uplift rate of southern QM. Accordingly, we aim to obtain the uplift rate of southern QM by using the cosmogenic ^26A1/^10 Be burial dating method to determine the age of the highest river terrace on the southern slope of QM.
文摘The features of physical geography in the transitional region between Qinling Mountains and Huanghuai Plain possess transitional characters evidently in two directions: one is from the western mountain to the eastern plain and the other is from southern subtropical zone to northern temperate zone. Torrential rain, especially strong torrential rain is frequent in the transitional region, and there are many torrential rain centers. A majority of torrential rain is distributed among 100-200 m asl. The winter temperature at 100-400 m asl is higher than that in Huanghuai Plain whose altitude is lower than that of the transitional region, and the highest temperature in January appears at 350-400 m asl.The thickness of warm slope belt in the transitional region varies from 100 m to 250 m asl. The formation of torrential rain and warm slope belt is the result of joint action of atmospheric circulation and local terrain. Frequent torrential rains and warm slope belt had tremendous influences on the soil properties, plant distribution and local climate in the transitional region.
文摘Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone of later Paleozoic era. Typical disseminated gold mineralization occurred in calcareous siltstone, which is major host rock and mainly composed of silt (SiO2 mostly varies from 38% to 73%) and calcite (CaO mostly varies from 10% to 25%). Pyrite created by living beings in Nanyangshan formation may be poor in gold. Faults and favorable layers jointly control disseminated gold mineralization. The significance of this opinion is very great for gold exploration.