期刊文献+
共找到521篇文章
< 1 2 27 >
每页显示 20 50 100
Geometry and 3D seismic characterisation of post-rift normal faults in the Pearl River Mouth Basin,northern South China Sea
1
作者 Yuanhang Liu Jinwei Gao +2 位作者 Wanli Chen Jiliang Wang Umair Khan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第4期25-39,共15页
Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift ... Based on high-resolution 3D seismic data acquired in the Pearl(Zhujiang)River Mouth Basin of the northern South China Sea,this study investigated the geometry,spatial extension,and throw distribution of the post-rift normal fault through detailed seismic interpretation and fault modeling.A total of 289 post-rift normal faults were identified in the study area and can be classified into four types:(1)isolated normal faults above the carbonate platform;(2)isolated normal faults cutting through the carbonate platform;(3)conjugate normal faults,and(4)connecting normal faults.Throw distribution analysis on the fault planes show that the vertical throw profiles of most normal fault exhibit flat-topped profiles.Isolated normal faults above the carbonate platform exhibit roughly concentric ellipses with maximum throw zones in the central section whereas the normal faults cutting through the carbonate platform miss the lowermost section due to the chaotic seismic reflections in the interior of the carbonate platform.The vertical throws of conjugate normal faults anomalously decrease toward their intersection region on the fault plane whereas the connecting normal faults present two maximum throw zones in the central section of the fault plane.According to the symmetric elliptical distribution model of fault throw,an estimation was made indicating that normal faults cutting through the carbonate platform extended downward between-1308 s and-1780 s(two-way travel time)in depth and may not penetrate the entire Liuhua carbonate platform.Moreover,it is observed that the distribution of karst caves on the top of the carbonate platform disaccord with those of hydrocarbon reservoirs and the post-rift normal faults cutting through the carbonate platform in the study area.We propose that these karst caves formed most probably by corrosive fluids derived from magmatic activities during the Dongsha event,rather than pore waters or hydrocarbons. 展开更多
关键词 Post-rift normal faults fault throw Karst caves Corrosive fluids Pearl River Mouth basin south china sea
下载PDF
Deep-large faults controlling on the distribution of the venting gas hydrate system in the middle of the Qiongdongnan Basin, South China Sea
2
作者 Jin-feng Ren Hai-jun Qiu +6 位作者 Zeng-gui Kuang Ting-wei Li Yu-lin He Meng-jie Xu Xiao-xue Wang Hong-fei Lai Jin Liang 《China Geology》 CAS CSCD 2024年第1期36-50,共15页
Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migra... Many locations with concentrated hydrates at vents have confirmed the presence of abundant thermogenic gas in the middle of the Qiongdongnan Basin(QDNB).However,the impact of deep structures on gasbearing fluids migration and gas hydrates distribution in tectonically inactive regions is still unclear.In this study,the authors apply high-resolution 3D seismic and logging while drilling(LWD)data from the middle of the QDNB to investigate the influence of deep-large faults on gas chimneys and preferred gasescape pipes.The findings reveal the following:(1)Two significant deep-large faults,F1 and F2,developed on the edge of the Songnan Low Uplift,control the dominant migration of thermogenic hydrocarbons and determine the initial locations of gas chimneys.(2)The formation of gas chimneys is likely related to fault activation and reactivation.Gas chimney 1 is primarily arises from convergent fluid migration resulting from the intersection of the two faults,while the gas chimney 2 benefits from a steeper fault plane and shorter migration distance of fault F2.(3)Most gas-escape pipes are situated near the apex of the two faults.Their reactivations facilitate free gas flow into the GHSZ and contribute to the formation of fracture‐filling hydrates. 展开更多
关键词 Venting gas hydrates Deep-large faults Gas chimney Gas-escape pipes High-resolution 3D seismic Logging while drilling Qiongdongnan basin south china sea
下载PDF
Genesis, evolution and reservoir identification of a Neogene submarine channel in the southwestern Qiongdongnan Basin, South China Sea 被引量:1
3
作者 Shuo Chen Donghui Jiang +4 位作者 Renhai Pu Yunwen Guan Xiaochuan Wu Tianyu Ji Chuang Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期57-78,共22页
A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendic... A rarely reported middle-late Miocene-Pliocene channel(incised valley fill),the Huaguang Channel(HGC),has been found in the deep-water area of the southwestern Qiongdongnan Basin(QDNB).This channel is almost perpendicular to the orientation of another well-known,large,and nearly coeval submarine channel in this area.Based on the interpretation of high-resolution 3D seismic data,this study describes and analyzes the stratigraphy,tectonics,sedimentation,morphology,structure and evolution of HGC by means of well-seismic synthetic calibration,one-and two-dimensional forward modeling,attribute interpretation,tectonic interpretation,and gas detection.The HGC is located on the downthrown side of an earlier activated normal fault and grew northwestward along the fault strike.The channel is part of a slope that extends from the western Huaguang Sag to the eastern Beijiao Uplift.The HGC underwent four developmental stages:the(1)incubation(late Sanya Formation,20.4–15.5 Ma),(2)embryonic(Meishan Formation,15.5–10.5 Ma),(3)peak(Huangliu Formation,10.5–5.5 Ma)and(4)decline(Yinggehai Formation,5.5–1.9 Ma)stages.The channel sandstones have a provenance from the southern Yongle Uplift and filled the channel via multistage vertical amalgamation and lateral migration.The channel extended 42.5 km in an approximately straight pattern in the peak stage.At 10.5 Ma,sea level fell relative to its lowest level,and three oblique progradation turbidite sand bodies filled the channel from south to north.A channel sandstone isopach map demonstrated a narrow distribution in the early stages and a fan-shaped distribution in the late stage.The formation and evolution of the HGC were controlled mainly by background tectonics,fault strike,relative sea level change,and mass supply from the Yongle Uplift.The HGC sandstone reservoir is near the Huaguangjiao Sag,where hydrocarbons were generated.Channel-bounding faults and underlying faults link the source rock with the reservoir.A regionally extensive mudstone caprock overlies the channel sandstone.Two traps likely containing gas were recognized in a structural high upstream of the channel from seismic attenuation anomalies.The HGC will likely become an important oil and gas accumulation setting in the QDNB deep-water area. 展开更多
关键词 south china sea Qiongdongnan basin submarine channel channel evolution reservoir identification
下载PDF
Formation of the Zengmu and Beikang Basins,and West Baram Line in the southwestern South China Sea margin
4
作者 Bing HAN Zhongxian ZHAO +7 位作者 Xiaofang WANG Zhen SUN Fucheng LI Benduo ZHU Yongjian YAO Liqiang LIU Tianyue PENG Genyuan LONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期592-611,共20页
The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debat... The Zengmu and Beikang basins,separated by the West Baram Line(WBL)in the southwestern South China Sea margin,display distinct geological and geophysical features.However,the nature of the basins and the WBL are debated.Here we explore this issue by conducting the stratigraphic and structural interpretation,faults and subsidence analysis,and lithospheric finite extension modelling using seismic data.Results show that the WBL is a trans-extensional fault zone comprising normal faults and flower structures mainly active in the Late Eocene to Early Miocene.The Zengmu Basin,to the southwest of the WBL,shows an overall synformal geometry,thick folded strata in the Late Eocene to Late Miocene(40.4-5.2 Ma),and pretty small normal faults at the basin edge,which imply that the Zengmu Basin is a foreland basin under the Luconia and Borneo collision in the Sarawak since the Eocene.Furthermore,the basin exhibits two stages of subsidence(fast in 40.4-30 Ma and slow in 30-0 Ma);but the amount of observed subsidence and heat flow are both greater than that predicted by crustal thinning.The Beikang Basin,to the NE of the WBL,consists of the syn-rift faulted sub-basins(45-16.4 Ma)and the post-rift less deformed sequences(16.4-0 Ma).The heat flow(~60 mW/m2)is also consistent with that predicted based on crustal thinning,inferring that it is a rifted basin.However,the basin shows three stages of subsidence(fast in 45-30 Ma,uplift in 30-16.4 Ma,and fast in 16.4-0 Ma).In the uplift stage,the strata were partly folded in the Late Oligocene and partly eroded in the Early Miocene,which is probably caused by the flexural bulging in response to the paleo-South China Sea subduction and the subsequent Dangerous Grounds and Borneo collision in the Sabah to the east of the WBL. 展开更多
关键词 tectonic subsidence foreland basin West Baram Line Zengmu basin Beikang basin south china sea
下载PDF
Extensional structures of the Nan'an Basin in the rifting tip of the South China Sea: Implication for tectonic evolution of the southwestern continental margin
5
作者 Shi-Guo Wu Li Zhang +5 位作者 Zhen-Yu Lei Xing Qian Shuai-Bing Luo Xiang-Yang Lu Thomas Lüdmann Lei Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期128-140,共13页
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C... Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea. 展开更多
关键词 Sedimentary basin Seismic sequence RIFTING Tectonic evolution south china sea
下载PDF
Spatial distribution and inventory of natural gas hydrate in the Qiongdongnan Basin,northern South China Sea 被引量:1
6
作者 Zhongxian ZHAO Ning QIU +4 位作者 Zhen SUN Wen YAN Genyuan LONG Pengchun LI Haiteng ZHUO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期729-739,共11页
Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiong... Natural gas hydrate is a potential clean energy source and is related to submarine geohazard,climate change,and global carbon cycle.Multidisciplinary investigations have revealed the occurrence of hydrate in the Qiongdongnan Basin,northern South China Sea.However,the spatial distribution,controlling factors,and favorable areas are not well defined.Here we use the available high-resolution seismic lines,well logging,and heat flow data to explore the issues by calculating the thickness of gas hydrate stability zone(GHSZ)and estimating the inventory.Results show that the GHSZ thickness ranges between mostly~200 and 400 m at water depths>500 m.The gas hydrate inventory is~6.5×109-t carbon over an area of~6×104 km2.Three areas including the lower uplift to the south of the Lingshui sub-basin,the Songnan and Baodao sub-basins,and the Changchang sub-basin have a thick GHSZ of~250-310 m,250-330 m,and 350-400 m,respectively,where water depths are~1000-1600 m,1000-2000 m,and2400-3000 m,respectively.In these deep waters,bottom water temperatures vary slightly from~4 to 2℃.However,heat flow increases significantly with water depth and reaches the highest value of~80-100 mW/m2 in the deepest water area of Changchang sub-basin.High heat flow tends to reduce GHSZ thickness,but the thickest GHSZ still occurs in the Changchang sub-basin,highlighting the role of water depth in controlling GHSZ.The lower uplift to the south of the Lingshui sub-basin has high deposition rate(~270-830 m/Ma in 1.8-0 Ma);the thick Cenozoic sediment,rich biogenic and thermogenic gas supplies,and excellent transport systems(faults,diapirs,and gas chimneys)enables it a promising area of hydrate accumulation,from which hydrate-related bottom simulating reflectors,gas chimneys,and active cold seeps were widely revealed. 展开更多
关键词 gas hydrate stability zone gas hydrate inventory Qiongdongnan basin south china sea
下载PDF
Tectonic-thermal history and hydrocarbon potential of the Pearl River Mouth Basin,northern South China Sea:Insights from borehole apatite fission-track thermochronology 被引量:1
7
作者 Xiao-yin Tang Shu-chun Yang Sheng-biao Hu 《China Geology》 CAS CSCD 2023年第3期429-442,共14页
The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evoluti... The Pearl River Mouth Basin(PRMB)is one of the most petroliferous basins on the northern margin of the South China Sea.Knowledge of the thermal history of the PRMB is significant for understanding its tectonic evolution and for unraveling its poorly studied source-rock maturation history.Our investigations in this study are based on apatite fission-track(AFT)thermochronology analysis of 12 cutting samples from 4 boreholes.Both AFT ages and length data suggested that the PRMB has experienced quite complicated thermal evolution.Thermal history modeling results unraveled four successive events of heating separated by three stages of cooling since the early Middle Eocene.The cooling events occurred approximately in the Late Eocene,early Oligocene,and the Late Miocene,possibly attributed to the Zhuqiong II Event,Nanhai Event,and Dongsha Event,respectively.The erosion amount during the first cooling stage is roughly estimated to be about 455-712 m,with an erosion rate of 0.08-0.12 mm/a.The second erosion-driven cooling is stronger than the first one,with an erosion amount of about 747-814 m and an erosion rate between about 0.13-0.21 mm/a.The erosion amount calculated related to the third cooling event varies from 800 m to 3419 m,which is speculative due to the possible influence of the magmatic activity. 展开更多
关键词 Oil and gas Hydrocarbon potential Apatite fission-track Tectonic-thermal evolution Thermal history modeling Cooling event Heating event Marine geological survey engineering Erosion amount and rate Oil-gas exploration engineering Pearl River Mouth basin The south china sea
下载PDF
Sedimentary evolution and control factors of the Rizhao Canyons in the Zhongjiannan Basin, western South China Sea
8
作者 Meijing Sun Yongjian Yao +5 位作者 Weidong Luo Jie Liu Xiaosan Hu Jiao Zhou Dong Ju Ziying Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第9期16-26,共11页
Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in t... Submarine canyon is an important channel for long-distance sediment transport, and an important part of deepwater sedimentary system. The large-scale Rizhao Canyons have been discovered for the first time in 2015 in the continental slope area of the western South China Sea. Based on the interpretation and analysis of multi-beam bathymetry and two-dimensional multi-channel seismic data, the geology of the canyons has however not been studied yet. In this paper, the morphology and distribution characteristics of the canyon are carefully described,the sedimentary filling structure and its evolution process of the canyon are analyzed, and then its controlling factors are discussed. The results show that Rizhao Canyons group is a large slope restricted canyon group composed of one east-west west main and nine branch canyons extending to the south. The canyon was formed from the late Miocene to the Quaternary. The east-west main canyon is located in the transition zone between the northern terrace and the southern Zhongjiannan Slope, and it is mainly formed by the scouring and erosion of the material source from the west, approximately along the slope direction. Its development and evolution is mainly controlled by sediment supply and topographic conditions, the development of 9 branch canyons is mainly controlled by gravity flow and collapse from the east-west main canyon. This understanding result is a supplement to the study of “source-channel–sink” sedimentary system in the west of the South China Sea, and has important guiding significance for the study of marine geological hazards. 展开更多
关键词 CANYON GEOMORPHOLOGY sedimentary evolution control factors Zhongjiannan basin western south china sea
下载PDF
Evolutions of sedimentary facies and palaeoenvironment and their controls on the development of source rocks in continental margin basins:A case study from the Qiongdongnan Basin,South China Sea
9
作者 Kun Liu Peng Cheng +2 位作者 Cai-Wei Fan Peng Song Qiang-Tai Huang 《Petroleum Science》 SCIE EI CSCD 2023年第5期2648-2663,共16页
Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not ... Hydrocarbon resources in the Qiongdongnan Basin have become an important exploration target in China.However,the development of high-quality source rocks in this basin,especially in its deep-water areas,are still not fully understood.In this study,evolutions of sedimentary facies and palaeoenvironment and their influences on the development of source rocks in diverse tectonic regions of the Qiongdongnan Basin were investigated.The results show that during the Oligocene and to Miocene periods,the sedimentary environment of this basin progressively varied from a semi-closed gulf to an open marine environment,which resulted in significant differences in palaeoenvironmental conditions of the water column for various tectonic regions of the basin.In shallow-water areas,the palaeoproductivity and reducibility successively decrease,and the hydrodynamic intensity gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In deep-water areas,the water column of the Yacheng and Lingshui strata has a higher palaeoproductivity and a weaker hydrodynamic intensity than that of the Sanya-Meishan strata,while the reducibility gradually increases for the water columns of the Yacheng,Lingshui,and Sanya-Meishan strata.In general,the palaeoenvironmental conditions of the water column are the most favorable to the development of the Yacheng organic-rich source rocks.Meanwhile,the Miocene marine source rocks in the deep-water areas of the Qiongdongnan Basin may also have a certain hydrocarbon potential.The differences in the development models of source rocks in various tectonic regions of continental margin basins should be fully evaluated in the exploration and development of hydrocarbons. 展开更多
关键词 Sedimentary facies Palaeoenvironmental conditions EVOLUTIONS Source rocks The Qiongdongnan basin south china sea
下载PDF
The sedimentary record of the Sanshui Basin:Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea
10
作者 Zhe ZHANG Nianqiao FANG Zhen SUN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期532-549,共18页
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San... Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene. 展开更多
关键词 continental margin south china sea Sanshui basin Late Cretaceous tectonic transition
下载PDF
Discovery of pockmarks in the Zengmu Basin,southern South China Sea and the implication
11
作者 Yanlin WANG Guanghong TU +4 位作者 Junhui YU Pin YAN Yongbin JIN Changliang CHEN Jie LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期757-768,共12页
The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the... The Zengmu Basin located in the shallow water area of the southern South China Sea,is rich in oil and gas resources,within which faults and mud-diapir are developed,but it is unknown whether oil and gas migrate to the seafloor surface.The newly collected multibeam data across the Zengmu Basin reveal a large number of depressions,with depths of 2-4 m,widths of several tens of meters,large distribution range of 1.8-8 km along survey line,up to~50 km,and their backscatter intensity(-26 dB)is much greater than that of the surrounding area(-38 dB).Combined with the developed mud-diapir and fracture structures,and abundant oil and gas resources within this basin,these depressions are presumed to be pockmarks.Furthermore,more than 110 mono-sized small circular pockmarks,with a depth of less than 1 m and a width of 5 m,are observed in an area of less than 0.03 km2,which are not obliterated by sediment infilling with high sedimentation rate,implying an existence of unit-pockmarks that are or recently were active.In addition,seismic profiles across the Zengmu Basin show characterization of upward migration of hydrocarbons,expressed as mud-diapir structures,bright spots in the shallow formation with characteristics of“low frequency increase and high frequency attenuation”.The subbottom profiles show the mud-diapir structures,as well as the gas-bearing blank zones beneath the seafloor.These features suggest large gas leaking and occurrence of large amounts of carbonate nodules on the seafloor.This indicates the complex and variable substrate type in the Zengmu Basin,while the area was once thought to be mainly silty sand and find sand.This is the first report on the discovery of pockmarks in the Zengmu Basin;it will provide basic information for submarine stability and marine engineering in China’s maritime boundaries. 展开更多
关键词 south china sea Zengmu basin dense pockmarks gas leaking substrate type
下载PDF
Geochemical characteristics of Sr isotopes in the LS33 drill core from the Qiongdongnan Basin, South China Sea, and their response to the uplift of the Tibetan Plateau
12
作者 Ke Wang Shikui Zhai +1 位作者 Zenghui Yu Huaijing Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期117-129,共13页
Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary ... Making full use of modern analytical and testing techniques to explore and establish new indexes or methods for extracting paleoseawater geochemical information from sediments will help to reconstruct the sedimentary paleoenvironment in different research areas.The connection between the subsidence of the South China Sea basin and the uplift of the Tibetan Plateau has been a scientific concern in recent decades.To explore the information on the sedimentary paleoenvironment,provenance changes and uplift of Tibetan Plateau contained in core sediments(debris),we selected core samples from Well LS33 in the Qiongdongnan Basin,South China Sea,and analyzed the contents of typical elements(Al,Th,and rare earth elements)that can indicate changes in provenance and the Sr isotopic compositions,which can reveal the geochemical characteristics of the paleoseawater depending on the type of material(authigenic carbonate and terrigenous detritus).The results show the following:(1)during the late Miocene,the Red River transported a large amount of detrital sediments from the ancient continental block(South China)to the Qiongdongnan Basin.(2)The authigenic carbonates accurately record changes in the 87Sr/86Sr ratios in the South China Sea since the Oligocene.These ratios reflect the semi-closed marginal sea environment of the South China Sea(relative to the ocean)and the sedimentary paleoenvironment evolution process of the deep-water area of the Qiongdongnan Basin from continental to transitional and then to bathyal.(3)Since the Neogene,the variations in the 87Sr/86Sr ratio in the authigenic carbonates have been consistent with the variations in the uplift rate of the Tibetan Plateau and the sediment accumulation rate in the Qiongdongnan Basin.These consistent changes indicate the complex geological process of the change in the rock weathering intensity and terrigenous Sr flux caused by changes in the uplift rate of the Tibetan Plateau,which influence the Sr isotope composition of seawater. 展开更多
关键词 sediments from a drill core grouping analysis elements and Sr isotopes provenance and paleoenvironment uplift of the Tibetan Plateau and subsidence of the south china sea basin
下载PDF
Tectonic Evolution of the Wanan Basin,Southwestern South China Sea 被引量:4
13
作者 Lü Caili ZHANG Gongcheng +1 位作者 YAO Yongjian WU Shiguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1120-1130,共11页
Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripp... Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripping techniques, we reconstructed the stratigraphic deposition and tectonic evolution histories of the basin. The basin formed from the Eocene and was generally in an extensional/transtensional state except for the Late Miocene local compressoin. The major basin extension ocurred in the Oligocene and Early Miocene (before -16.3 Ma) and thereafter uniform stretch in a smaller rate. The northern and middle basin extended intensely earlier during 38.6-23.3 Ma, while the southern basin was mainly stretched during 23.3-16.3 Ma. The basin formation and development are related to alternating sinistral to dextral strike-slip motions along the Wanan Fault Zone. The dominant dynamics may be caused by the seafloor spreading of the South China Sea and the its peripheral plate interaction. The basin tectonic evolution is divided into five phases: initial rifting, main rifting, rift-drift transition, structural inversion, and thermal subsidence. 展开更多
关键词 tectonic evolution stretch factor Wanan basin south china sea
下载PDF
ON THE ORIGIN AGE OF THE SOUTHWEST BASIN IN THE SOUTH CHINA SEA 被引量:1
14
作者 刘昭蜀 闫贫 刘海龄 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 1997年第3期285-288,共4页
This paper propounds that the origin and evolution of the Southwet Basin (SWB) in the South China Sea (SCSh) are closely related with those of the SCS, reviews various viewpoints on its origin age with a large gap bet... This paper propounds that the origin and evolution of the Southwet Basin (SWB) in the South China Sea (SCSh) are closely related with those of the SCS, reviews various viewpoints on its origin age with a large gap between the oldest age and the youngest age. offers some suggestions on the SWB’s origin age and gives some proposals to ascertain satisfactorily the origin and evolution, and multi-phasal and multiaxial spreading of the SCS and SWB. 展开更多
关键词 south china sea southwest basin magnetic LINEATION GEOTHERMAL flow
下载PDF
Three-stage tectonic subsidence and its implications for the evolution of conjugate margins of the southwest subbasin,South China Sea 被引量:1
15
作者 Wenlong WANG Dongdong DONG +1 位作者 Xiujuan WANG Guangxu ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第5期1854-1870,共17页
To reveal the tectonic characteristics of the continental margins in the southwest subbasin(SWB)of the South China Sea,a long high-resolution seismic profile was studied using empty basin subsidence.We find that tecto... To reveal the tectonic characteristics of the continental margins in the southwest subbasin(SWB)of the South China Sea,a long high-resolution seismic profile was studied using empty basin subsidence.We find that tectonic subsidence features on both margins are uniformly divided into three stages:(1)slow subsidence from Tg to 18.5 Ma(synrift stage);(2)extremely slow subsidence/uplift from18.5 to 16 Ma(spreading stage);and(3)accelerated subsidence from 16 to 0 Ma(post-spreading stage).This feature differs from the classic tectonic subsidence pattern of rifted basins,which exhibits fast subsidence during synrift stage and slow subsidence during the post-rift stage.The tectonic uplift occurred during the spreading stage and the magnitude increased from the continent to the ocean,which is likely related to mantle flow during seafloor spreading.We propose that lower crustal flow played a significant role in the tectonic evolution of the continental margins of the SWB.The lower crust of the SWB margins was warmer and therefore weaker,and more prone to flow beneath the faulting center,which compensated for the upper crustal thinning caused by brittle faulting during the synrift period and thus reduced the tectonic subsidence rate.During the spreading stage,faulting attenuated rapidly,and a necking zone appeared at the continentocean transition formed by lithospheric extension.With upwelling asthenosphere,small-scale secondary mantle convection occurred under the necking zone,which raised the continental margin isotherms and increased the buoyancy.Simultaneously,secondary mantle convection lifted the overriding crust,thus the overall subsidence rate decreased sharply or even reversed to uplift.After seafloor spreading,the effect of mantle convection faded away,and sediment loading drove the lower crust to flow landward.Thermal relaxation,lower crust flow,and vanish of secondary mantle convection together led to rapid subsidence in this stage. 展开更多
关键词 tectonic subsidence lower crustal flow tectonic evolution southwest subbasin south china sea
下载PDF
Moho Structure of the Southwest Sub-Basin, South China Sea, from a Multichannel Seismic Reflection Profile NH973-1
16
作者 ZHANG Jinchang CHEN Jie HUANG Yanming 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第5期1105-1114,共10页
Moho structure provides important clues for understanding crustal structure,isostatic state and magmatic flux from mantle to surface.Across-basin Moho structure of the South China Sea(SCS)is important for understandin... Moho structure provides important clues for understanding crustal structure,isostatic state and magmatic flux from mantle to surface.Across-basin Moho structure of the South China Sea(SCS)is important for understanding crustal evolution mechanisms of both continental break-up and seafloor spreading processes.Southwest Sub-basin(SWSB)opened up the latest and has the closest continental margins,making it the best to study the across-basin structure.Multichannel seismic(MCS)reflection data of line NH973-1 that crosses SWSB in NW-SE direction were reprocessed in order to image Moho structure.In MCS data,Moho reflectors are observed in places,which were not revealed in prior researches.The Moho generally shows symmetric structure on both sides of the central rift valley(CRV)and with variations in crustal thickness.Around CRV,the Moho is 2 seconds depth in two-way travel time(TWTT)beneath the igneous basement,which corresponds to 7 km depth,indicating normal oceanic crustal accretion during the ending of seafloor spreading.Close to the continent-ocean boundary(COB),the Moho becomes shallow to 1 second depth in TWTT(3.5 km),implying strong crustal thinning towards the continent,probably because of poor magma supply at the beginning of seafloor spreading.At south COB,the Moho depth under the crust almost reaches zero,which could be explained as a result of exhumed mantle.In addition,two low-angle,deep-penetrating normal faults are observed at south COB.The faults cut across the Moho into the upper mantle,which may be attributed to lithospheric hyper-stretching at COB during continental break-up. 展开更多
关键词 MOHO STRUCTURE MULTICHANNEL seismic reflection CRUSTAL STRUCTURE south china sea OCEANIC basin continent-ocean boundary
下载PDF
The Earlier Spreading of South China Sea Basin due to the Late Mesozoic to Early Cenozoic Extension of South China Block: Structural Styles and Chronological Evidence from the Dulong-Song Chay Metamorphic Dome, Southwest China
17
作者 Yan Danping Zhou Meifu +1 位作者 Wang Yan Zhao Taiping 《Journal of China University of Geosciences》 SCIE CSCD 2005年第3期189-199,共11页
To understand the forming and tectonic evolution of the South China Sea basin, new data of the structural styles and geochronology were obtained from the Dulong-Song Chay dome, southeastern Yunnan and northern Vietnam... To understand the forming and tectonic evolution of the South China Sea basin, new data of the structural styles and geochronology were obtained from the Dulong-Song Chay dome, southeastern Yunnan and northern Vietnam. The structural styles were acquired through field investigation and geo-chronological dating was carried out using zircon SHRIMP Ⅱ U-P and argon isotopic analyses. The South China Sea basin extension occurred firstly at Late Mesozoic to Early Cenozoic, and then at Late Oligocene to Middle Miocene (32-17 Ma). The second stage of extension formed immediately after the first stage, and both extensions have a consistent forming mechanism. New structural analysis and geo-chronological data do not support the models of "backarc spreading" and "strike-slip faults producing the extension". Then what mechanism resulted in the extension of South China Sea basin? The data indicate that at least two episodes of major extensional tectonics, i.e. , the D1 deformation at 237-228 Ma resulted in the rising and exhumation of the dome, and D2 deformation at 86-78 Ma overprinted and redeformed the dome. Of them, the D2 shows a consistent forming time, extensional direction and tectonic regime among Dulong-Song Chay dome, South China block and the northern margin of the South China Sea basin. Regional geology has proved that the northern margin of the South China Sea basin belongs to the South China block, therefore, we interpreted that the Late Mesozoic to Early Cenozoic extensional tectonics occurred in the northern margin of the South China Sea basin due to the intraplate deformation of the South China block, while the Ailaoshan-Red River sinistral slip strengthened the Cenozoic extension in the South China Sea basin. 展开更多
关键词 south china sea basin Dulong-Song Chay metamorphic dome south china block extensional tectonics geochronological determination
下载PDF
The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin,northern South China Sea 被引量:7
18
作者 Li Wenhao Zhang Zhihuan +2 位作者 Li Youchuan Liu Chao Fu Ning 《Petroleum Science》 SCIE CAS CSCD 2013年第2期161-170,共10页
Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but ... Coals developed in the Oligocene Yacheng and Lingshui formations in the Qiongdongnan Basin have high organic matter abundance, and the dark mudstones in the two formations have reached a good source rock standard but with strong heterogeneity. Through the analysis of trace elements, organic macerals and biomarkers, it is indicated that plankton has made little contribution to Oligocene source rocks compared with the terrestrial higher plants. The organic matter preservation depends on hydrodynamics and the redox environment, and the former is the major factor in the study area. During the sedimentary period of the Yacheng Formation, tidal flats were developed in the central uplift zone, where the hydrodynamic conditions were weak and the input of terrestrial organic matter was abundant. So the Yacheng Salient of the central uplift zone is the most favorable area for the development of source rocks, followed by the central depression zone. During the sedimentary period of the Lingshui Formation, the organic matter input was sufficient in the central depression zone due to multiple sources of sediments. The semi-enclosed environment was favorable for organic matter accumulation, so high quality source rocks could be easily formed in this area, followed by the Yacheng salient of central uplift zone. Source rocks were less developed in the northern depression zone owing to poor preservation conditions, 展开更多
关键词 Hydrocarbon generation potential PALEOPRODUCTIVITY preservation conditions hydrodynamicconditions redox conditions Oligocene source rocks Qiongdongnan basin northern south china sea
下载PDF
Plate tectonic control on the formation and tectonic migration of Cenozoic basins in northern margin of the South China Sea 被引量:18
19
作者 Pengcheng Wang Sanzhong Li +7 位作者 Yanhui Suo Lingli Guo Guangzeng Wang Gege Hui M.Santosh Ian D.Somerville Xianzhi Cao Yang Li 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1231-1251,共21页
The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geody... The tectonic evolution history of the South China Sea(SCS) is important for understanding the interaction between the Pacific Tectonic Domain and the Tethyan Tectonic Domain,as well as the regional tectonics and geodynamics during the multi-plate convergence in the Cenozoic.Several Cenozoic basins formed in the northern margin of the SCS,which preserve the sedimentary tectonic records of the opening of the SCS.Due to the spatial non-uniformity among different basins,a systematic study on the various basins in the northern margin of the SCS constituting the Northern Cenozoic Basin Group(NCBG) is essential.Here we present results from a detailed evaluation of the spatial-temporal migration of the boundary faults and primary unconformities to unravel the mechanism of formation of the NCBG.The NCBG is composed of the Beibu Gulf Basin(BBGB),Qiongdongnan Basin(QDNB),Pearl River Mouth Basin(PRMB) and Taixinan Basin(TXNB).Based on seismic profiles and gravity-magnetic anomalies,we confirm that the NE-striking onshore boundary faults propagated into the northern margin of the SCS.Combining the fault slip rate,fault combination and a comparison of the unconformities in different basins,we identify NE-striking rift composed of two-stage rifting events in the NCBG:an early-stage rifting(from the Paleocene to the Early Oligocene) and a late-stage rifting(from the Late Eocene to the beginning of the Miocene).Spatially only the late-stage faults occurs in the western part of the NCBG(the BBGB,the QDNB and the western PRMB),but the early-stage rifting is distributed in the whole NCBG.Temporally,the early-stage rifting can be subdivided into three phases which show an eastward migration,resulting in the same trend of the primary unconformities and peak faulting within the NCBG.The late-stage rifting is subdivided into two phases,which took place simultaneously in different basins.The first and second phase of the early-stage rifting is related to back-arc extension of the Pacific subduction retreat system.The third phase of the earlystage rifting resulted from the joint effect of slab-pull force due to southward subduction of the proto-SCS and the back-arc extension of the Pacific subduction retreat system.In addition,the first phase of the late-stage faulting corresponds with the combined effect of the post-collision extension along the Red River Fault and slab-pull force of the proto-SCS subduction.The second phase of the late-stage faulting fits well with the sinistral faulting of the Red River Fault in response to the Indochina Block escape tectonics and the slab-pull force of the proto-SCS. 展开更多
关键词 Northern Cenozoic basin group south china sea NE-Striking fault Tectonic migration Pacific Plate Tethyan tectonic domain
下载PDF
Observational Study on the Onset of the South China Sea Southwest Monsoon 被引量:5
20
作者 阎俊岳 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第2期154-164,共11页
Based on the long-term marine ship observation data, records of meteorological stations and High-Reflective Cloud(HRC) data by satellite remote sensing , this paper has studied the circulation patterns and variability... Based on the long-term marine ship observation data, records of meteorological stations and High-Reflective Cloud(HRC) data by satellite remote sensing , this paper has studied the circulation patterns and variability in elements during onset and the established periods of the South China Sea(SCS) southwest(SW) monsoon. The averaged date of the onset SW monsoon in the SCS occurs in the middle of May climatologically. The corresponding date for the northern part is little earlier (May 12) and those for the southern parts are little later (May 20). The interannual range of the onset dates is about one month. Following the onset of the SW monsoon, the cloud amount and the precipitation increase while the convection activities enhance over the SCS. But there is a strong spatial heterogeneity within the domain. After onset of the SW monsoon the strong convective area moves northwards, while the SCS rain band moves to the center and north. Sea surface temperature(SST) increases rapidly before the onset and the leading time is about one month. The increment of SST supplies heat and vapor for the onset. From April to May the surface heat fluxes display obvious changes, e.g., latent heat exchange and evaporation enhancement. It is one of the reasons why the SW monsoon bursts firstly in the SCS. 展开更多
关键词 south china sea southwest monsoon ONSET Observational study
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部