Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improv...Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.展开更多
Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network g...Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.展开更多
In order to investigate Cd accumulation, subcellular distribution, and local-ization in soybean seedlings leaves, soybean seedlings were cultivated in solution containing different concentrations of Cd. The results sh...In order to investigate Cd accumulation, subcellular distribution, and local-ization in soybean seedlings leaves, soybean seedlings were cultivated in solution containing different concentrations of Cd. The results showed that most Cd associ-ated with the cellwal s and soluble fractions, and a minor part of Cd presented in mitochondria fractions, nuclear and chloroplast fractions, especial y exposure to high Cd concentrations. Under 20.00 mg/L Cd stress, Cd subcellular distribution fol owed a sequence as: soluble fractions (55.00%)>cellwal s (30.0%)>mitochondria fractions (8.21%)>nuclear and chloroplast fractions (6.79%). Deposited Cd black particles were observed in cellwal s, chloroplasts, nuclei, and vacuoles through electrical microscope slice. This fact indicated that the cellwal s of soybean leaves were the first protecting organel es from Cd toxicity, and the cellwal s and soluble fractions were the main place for Cd storage. Due to Cd accumulated in the organel es, the intercellular space was enlarged and the subcellular structure was damaged, especial y for the chloroplasts.展开更多
It is important to determine the isoflavone components by high-performance liquid chromatography (HPLC) for the molecular assistant selection of isoflavone in soybean. Based on the standard samples of 12 isoflavone ...It is important to determine the isoflavone components by high-performance liquid chromatography (HPLC) for the molecular assistant selection of isoflavone in soybean. Based on the standard samples of 12 isoflavone components, the isoflavone components were analyzed using the determination of absorbance peaks method by HPLC. The results showed that there were different maximum ultraviolet (UV) absorbance for the aglycones of daidzein, glycitein, and genistein, which were at 250, 257, and 260 nm, respectively. A linear gradient elution of acetonitrile (13-30%) containing 0. 1% acetic acid as a mobile phase was applied on a YMC-C18 column at 35℃. The 12 isoflavone components were determined using the UV detector by HPLC. We concluded that this is a rapid and precise method which adapted to determine the large numbers of samples with microanalysis.展开更多
Salt is an abiotic stress factor that strongly affects soybean growth and production. A single dominant gene has been shown to confer salt tolerance in the soybean cultivar Tiefeng 8.The objective of the present study...Salt is an abiotic stress factor that strongly affects soybean growth and production. A single dominant gene has been shown to confer salt tolerance in the soybean cultivar Tiefeng 8.The objective of the present study was to genetically map the salt-tolerance gene in an F2:3population and a recombinant inbred line(RIL) population derived from a cross between two cultivated soybeans, Tiefeng 8(tolerant) and 85-140(sensitive). The F2:3families and RILs were treated with 200 mmol L-1Na Cl to evaluate salt tolerance. The F2:3population showed 1(42 tolerant): 2(132 segregating): 1(65 sensitive) segregation, indicating a single dominant gene for salt tolerance in Tiefeng 8. A sequence-characterized amplified region(SCAR) marker from a previously identified random amplified polymorphic DNA(RAPD)marker and four insertion/deletion polymorphism(In Del) markers were developed within the mapping region. Using these markers along with SSR markers, the salt-tolerance gene was mapped within 209 kb flanked by SCAR marker QS08064 and SSR marker Barcsoyssr_3_1301 on chromosome 3. Three markers that cosegregated with the salt tolerance gene and SCAR marker QS08064 were used to genotype 35 tolerant and 23 sensitive soybean accessions. These markers showed selection efficiencies of 76.2% to94.2%. The results indicate that these markers will be useful for marker-assisted breeding and facilitating map-based cloning of the salt tolerance gene in soybean.展开更多
Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soy...Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference ofbiomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.展开更多
Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may p...Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may provide a theoretical basis for improving seed yield. However, there are few reports related to QTL mapping of 100-SW across multiple ecological regions. In this study, 21 loci associated with seed size traits were identified using a genome-wide association of 5361 single nucleotide polymorphisms (SNPs) across three ecoregions in China, which could explain 8.12%–14.25% of the phenotypic variance respectively. A new locus, named as SW9-1 on chromosome 9 that explained 10.05%–10.93% of the seed weight variance was found significantly related to seed size traits, and was not previously reported. The selection effect analysis showed that SW9-1 locus has a relatively high phenotypic effect (13.67) on 100-SW, with a greater contribution by the accessions with bigger seeds (3.69) than the accessions with small seeds (1.66). Increases in seed weight were accompanied by increases in the frequency of SW9-1T allele, with >90% of the bred varieties with a 100-SW >30 g carrying SW9-1T. Analysis of SW9-1 allelic variation in additional soybean accessions showed that SW9-1T allele accounting for 13.83% of the wild accessions, while in 46.55% and 51.57% of the landraces and bred accessions, respectively, this results indicating that the SW9-1 locus has been subjected to artificial selection during the early stages of soybean breeding, especially the utilization of SW9-1T in edamame for big seed. These results suggest that SW9-1 is a novel and reliable locus associated with seed size traits, and might have an important implication for increasing soybean seed weight in molecular design breeding. Cloning this locus in future may provide new insights into the genetic mechanisms underlying soybean seed size traits.展开更多
Trichomes (plant hairs) are present on nearly all land plants and are known to play important roles in plant protection, specifically against insect herbivory, drought, and UV radiation. The identification of quanti...Trichomes (plant hairs) are present on nearly all land plants and are known to play important roles in plant protection, specifically against insect herbivory, drought, and UV radiation. The identification of quantitative trait loci (QTL) associated with trichome density should help to interpret the molecular genetic mechanism of soybean trichome density. 184 recombinant inbred lines (RILs), derived from a cross between soybean cultivars Kefeng 1 and Nannong 1138-2 were used as segregating population for evaluation of TDU (trichome density on the upper surface of leaf blade) and TDD (trichome density on the downer surface of leaf blade). A total of 15 QTL were detected on molecular linkage groups (MLG) A2, Dla, Dlb, E and H by composite interval mapping (CIM) and among all the QTL, qtuA2-1, qtuD 1 a-1, qtuD lb-2, qtuH-2 qtuE-1, qtdDlb-2, and qtdH- 2 were affirmed by multiple interval mapping (MIM). The contribution ofphenotypic variance of qtuH-2 was 31.81 and 29.4% by CIM and MIM, respectively, suggesting it might be major gene Ps loci. Only 10 pairs of main QTL interactions for TDU were detected, explained a range of 0.2-5.1% of phenotypic variations for each pair for a total of 22.8%. The QTL on MLG Dlb affecting trichome density were mapped near to Rsc-7 conditioning resistance to SMV (soybean mosaic virus). This study showed that the genetic mechanism of trichome density was the mixed major gene and polygene inheritance, and also suggested that the causal nature between trichome density and other agronomic traits.展开更多
Glyphosate is a highly efficient, broad-spectrum nonspecific herbicide that inhibits the 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS)-mediated pathway of shikimic acid. The screening of glyphosate-resistant EPSP...Glyphosate is a highly efficient, broad-spectrum nonspecific herbicide that inhibits the 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS)-mediated pathway of shikimic acid. The screening of glyphosate-resistant EPSPS gene is a major means for the development of new genetically modified glyphosate-resistant transgenic crop. Currently, the main commercialized glyphosate-resistant soybean contains glyphosate-resistant gene CP4-EPSPS. In this study, a G10-EPSPS gene was reported providing glyphosate resistance in Zhongdou 32. Here, G10-EPSPS gene was introduced into soybeans through Agrobacterium-mediated soybean cotyledon node. PCR, Southern blotting, semi-quantitative RT-PCR, qRT-PCR, and Western blotting were used, and the results revealed that G10-EPSPS had been integrated into the soybean genome and could be expressed steadily at both mRNA and protein levels. In addition, glyphosate resistance analysis showed that the growth of transgenic soybean had not been affected by concentrations of 900 and 2 700 g a.e. ha–1 of glyphosate. All the results indicated that G10-EPSPS could provide high glyphosate resistance in soybeans and be applied in production of glyphosate-resistant soybean.展开更多
Fifteen combinations with six soybean cultivars of different isoflavone content were formulated and planted in a randomized complete-block design model; genetic factors of isoflavone quantity were analyzed. Results in...Fifteen combinations with six soybean cultivars of different isoflavone content were formulated and planted in a randomized complete-block design model; genetic factors of isoflavone quantity were analyzed. Results indicated that genetic factors of isoflavone contents in F2 population inherited quantitatively. Isoflavone content of F1 F2 seeds normally trended. There were heterosis in F1, F2 of most combinations, and also heterobeltiosis in part of the crosses. The broad sense heritability of F2 was higher in parts of the crosses. It predicted the selection might be carried out preliminarily in F2 hybrids. There was significant positive correlation between hybrids and mid-parent.展开更多
Soybean isoflavones are essential secondary metabolites synthesized in the phenylpropanoid pathway and benefit human health. In the present study, highresolution QTL mapping for isoflavone components was performed usi...Soybean isoflavones are essential secondary metabolites synthesized in the phenylpropanoid pathway and benefit human health. In the present study, highresolution QTL mapping for isoflavone components was performed using specific-locus amplified fragment sequencing(SLAF-seq) with a recombinant inbred line(RIL) population(F5:7) derived from a cross between two cultivated soybean varieties, Luheidou 2(LHD2) and Nanhuizao(NHZ). Using a high-density genetic map comprising 3541 SLAF markers and the isoflavone contents of soybean seeds in the 200 lines in four environments, 24 stable QTL were identified for isoflavone components, explaining 4.2%–21.2% of phenotypic variation.Of these QTL, four novel stable QTL(qG8, qMD19, qMG18, and qTIF19) were identified for genistin, malonyldaidzin, malonylgenistin, and total isoflavones, respectively. Gene annotation revealed three genes involved in isoflavone biosynthesis(Gm4CL, GmIFR, and GmCHR) and 13 MYB-like genes within genomic regions corresponding to stable QTL intervals, suggesting candidate genes underlying these loci. Nine epistatic QTL were identified for isoflavone components, explaining 4.7%–15.6% of phenotypic variation. These results will facilitate understanding the genetic basis of isoflavone accumulation in soybean seeds. The stable QTL and tightly linked SLAF markers may be used for markerassisted selection in soybean breeding programs.展开更多
Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Al- though the soybean vegetative tissues and seeds provide a major source of high-quality prot...Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Al- though the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low con- centration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione y-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.展开更多
Soybean cyst nematode (SCN Heterodera glycines Ichinohe) is one of the most important nationwide soybean diseases in China. A total of 38 soil specimens or locations in the area was sampled and tested for SCN races ...Soybean cyst nematode (SCN Heterodera glycines Ichinohe) is one of the most important nationwide soybean diseases in China. A total of 38 soil specimens or locations in the area was sampled and tested for SCN races during 2001-2003 for the inspection of race distribution in Huang-Huai Valleys. A map of race distribution was constructed according to the data from both the present study and the published reports cited. Three areas, namely, the area of southeast to Jinan in Shangdong Province; the area of northern Henan Province and its border region to south of Hebei Province; and the area of Luohe, Zhoukou of Henan Province and Fuyang of Anhui Province mainly infested with Race 1 were identified. Race 4 was predominant in Shanxi Province, Beijing and the adjacent area of Henan, Shandong, and Anhui provinces, and the delta of Huanghe River in Shandong Province. Race 2 was mainly found in Liaocheng, Dezhou of Shangdong Province and Shijiazhuang of Hebei Province, and Jiaozuo and Huojia of Henan Province. Race 7 was distributed in the west part of Jiaodong Peninsula of Shandong Province and Kaifeng, Huaxian, Wenxian of Henan Province. Race 5 was found and scattered in Hebei and Henan Province. Race 9 was found in Shangqiu of Henan Province, which was reported for the first time in China. It can be seen that Race 1 and Race 4 were the two predominant races in Huang-Huai Valleys, and that research should focus on developing resistant cultivars of these races. There might exist other races in an area with some predominant races. The race substitution in the past decade was not obviously found, therefore, the results should be meaningful to future breeding for resistance to SCN in Huang-Huai Valleys.展开更多
Understanding the changes in agronomic and physiological traits associated with yield genetic gain is important for soybean production and future breeding strategy. The objective of this study was to compare the older...Understanding the changes in agronomic and physiological traits associated with yield genetic gain is important for soybean production and future breeding strategy. The objective of this study was to compare the older and modern cultivars to learn whether the yield improvements depend on preplant fertilizer or the plant productivity improvement, A set of older cultivars, with their modern counterparts derived from breeding programs in Liaoning and Ohio were evaluated for their agronomic and physiological traits under different fertilizer levels from 2004 to 2006. There was no improvement of response to N and P preplant fertilizer for genotypes. After more than 70 yr breeding, soybean breeders made some improvements in agronomic and physiological traits that contribute to yield increase. When compared to older cultivar, modern Liaoning and Ohio cultivars were shorter and more resistance to lodging, had greater leaf density, higher harvest index, more leaf area per plant, and greater photosynthetic rate, transpiration rate and stomatal conductance at the beginning of seed development. Ohio cultivars were more resistant to lodging as if selected for easy harvest by combine, even under high N and P preplant fertilizer level, which resulted in Ohio cultivars with higher and stable yield productivity.展开更多
Phytophthora root rot is one of the most prevalent diseases in the world,which can infect the seedlings and plants,with substantial negative impact on soybean yield and quality.MicroRNAs (miRNAs) are a class of post...Phytophthora root rot is one of the most prevalent diseases in the world,which can infect the seedlings and plants,with substantial negative impact on soybean yield and quality.MicroRNAs (miRNAs) are a class of post-transcriptional regulators of gene expression during growth and development of organisms.A soybean disease-resistance variety Suinong 10 was inoculated with Phytophthora sojae race No.1,and the specific miRNA resistant expression profile was acquired by microarray for the first time.Different expressional miRNAs have been found after comparing the results of the treated sample with the control sample.Furthermore,the target genes of different expressional miRNAs were predicted.Two miRNAs,cbr-mir-241 and ath-miR854a,regulated the disease-resistance process directly through their targets,some enzymes.Another two miRNAs,gma-miR169a and ath-miR169h,participated in disease-resistance regulation as transcription factors.Similarly,one miRNA,ptc-miR164f,has been reported to regulate the plant development.All of these studies would be served as the foundation for exploring the resistance mechanism.展开更多
The genetic analysis of soybean isoflavone content and its components were carried out based on the NC Ⅱ matingdesign in eight soybean varieties. The results showed that the isoflavone contents and its components of ...The genetic analysis of soybean isoflavone content and its components were carried out based on the NC Ⅱ matingdesign in eight soybean varieties. The results showed that the isoflavone contents and its components of soybean seedare quite differences among the tested materials, the contents of isoflavone and daidzein are controlled not only byadditive effects and but also by non-additive effects, while the content of genistin is dominated by non-additive effects,and genistein, glycitin and daidzin are mainly controlled by additive effects. There are significant differences in thecontents of isoflavone and its components among the combinations derived from different parents. Results also indicatedthat the tested traits are negatively heterosis except for the contens of daidzein and daidzin are positively heterosis basedon the data of the GCA and SCA in average heterosis values. In this research we have a suggestion that soybean varietywith high isoflavone should be used as one of the parents in the breeding program, and it is the best choice that thecombinations crossed between two high isoflavone varieties or a high variety and a low one.展开更多
The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors includi...The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors including meteorological factors, soil nutritionand altitudes were received and used for statistical analysis. The step-wise regressionwas used to screen the correlated factors, which significantly effected isoflavonecontents. Results showed that 9 eco-physiological factors were highly correlated withisoflavones. Low mean temperature, high diurnal temperature range at seed filling andmaturity, more sunlight hours and low mean temperature at emergence were favorable toisoflavone accumulation. The rainfall at emergence showed a nonlinear relationship withisoflavone content and its optimum value was 75 mm for isoflavone formation. Low diurnaltemperature range at branching, high organic matter and low sulfur content in soil weresuitable for the formation of isoflavones. The isoflavone contents would not be affectedby other eco-physiological factors in this study.展开更多
Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the c...Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype x environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal, embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore, the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean, The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.展开更多
The effects of salinity (50 mmol/L NaCI) and Cd (1 μmol/L CdCl2) as sole and combined on growth and photosynthetic parameters were studied using two soybean genotypes, Huachun 18 and NGB. The concentrations of C...The effects of salinity (50 mmol/L NaCI) and Cd (1 μmol/L CdCl2) as sole and combined on growth and photosynthetic parameters were studied using two soybean genotypes, Huachun 18 and NGB. The concentrations of Cd^2+, Zn^2+, Ca^2+, Mg^2+, K^+ and Na^+were also determined in seeds and pods. Huachun 18 suffered a more serious decrease than NGB in net photosynthetic rate (P,) in the treatments of salinity stress alone and combined stress (NaCl+Cd), showing that it is relatively sensitive to salinity. The decrease in P, caused by salt stress in Huachun 18 was mainly due to the reduced total chlorophyll content and photosynthetic efficiency (the ratio of variable fluorescence to maximal fluorescence, Fv/Fm), whereas the decease in NGB was mainly related to reduced stomatal conductance (Gs), The combined stress of both Na and Cd did not induce further decrease in photosynthesis and fluorescence in the two genotypes relative to salt or Cd stress alone. Greater change in the pod concentrations of Zn^2+, Ca^2+, Mg^2+, K^+ and Na^+was detected under salt stress for Huachun 18 than for NGB. The results suggested that the interactive effect of NaCl-Cd on growth and nutrient uptake differs between the two soybean genotypes.展开更多
基金The study was supported by the National Natural Science Foundation of China(32101795,32301782)National Key Research and Development Program of China(2016YFD0100201-01)+2 种基金Liaoning Provincial Major Special Project of Agricultural Science and Technology(2022JH1/10200002,2021JH1/10400038)Key Research and Development Plan of Liaoning Science and Technology Department(2021JH2/1020027)Shenyang Seed Industry Innovation Project(22-318-2-12).
文摘Drought is one of the abiotic stresses limiting the production of soybean(Glycine max).Elucidation of the genetic and molecular basis of the slow-wilting(SW)trait of this crop offers the prospect of its genetic improvement.A panel of 188 accessions and a set of recombinant inbred lines produced from a cross between cultivars Liaodou 14 and Liaodou 21 were used to identify quantitative-trait loci(QTL)associated with SW.Plants were genotyped by Specific-locus amplified fragment sequencing and seedling leaf wilting was assessed under three water-stress treatments.A genome-wide association study identified 26 SW-associated single-nucleotide polymorphisms(SNPs),including three located in a 248-kb linkage-disequilibrium(LD)block on chromosome 2.Linkage mapping revealed a major-effect QTL,qSW2,associated with all three treatments and adjacent to the LD block.Fine mapping in a BC_(2)F_(3) population derived from a backcross between Liaodou 21 and R26 confined qSW2 to a 60-kb interval.Gene expression and sequence variation analysis identified the gene Glyma.02 g218100,encoding an auxin transcription factor,as a candidate gene for qSW2.Our results will contribute significantly to improving drought-resistant soybean cultivars by providing genetic information and resources.
基金This work was financially supported by the grants from the National Key Research and Development Program of China(2021YFF1001204,2021YFD1201602)the MOE 111 Project(B08025)+2 种基金the MOA CARS-04 program,the Program of Jiangsu province(JBGS-2021-014)the Guangxi Scientific Research and Technology Development Plan(14125008-2-16)the Guidance Foundation of Sanya Institute of Nanjing Agricultural University(NAUSY-ZZ02,NAUSY-MS05).
文摘Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.
基金Supported by the National Natural Science Foundation of China(20677080)Doctor Foundation of University of South China(2011XQD62)Fund of Hengyang Science and Technology Bureau(2013KN33)~~
文摘In order to investigate Cd accumulation, subcellular distribution, and local-ization in soybean seedlings leaves, soybean seedlings were cultivated in solution containing different concentrations of Cd. The results showed that most Cd associ-ated with the cellwal s and soluble fractions, and a minor part of Cd presented in mitochondria fractions, nuclear and chloroplast fractions, especial y exposure to high Cd concentrations. Under 20.00 mg/L Cd stress, Cd subcellular distribution fol owed a sequence as: soluble fractions (55.00%)>cellwal s (30.0%)>mitochondria fractions (8.21%)>nuclear and chloroplast fractions (6.79%). Deposited Cd black particles were observed in cellwal s, chloroplasts, nuclei, and vacuoles through electrical microscope slice. This fact indicated that the cellwal s of soybean leaves were the first protecting organel es from Cd toxicity, and the cellwal s and soluble fractions were the main place for Cd storage. Due to Cd accumulated in the organel es, the intercellular space was enlarged and the subcellular structure was damaged, especial y for the chloroplasts.
基金supported by grants from the National Transgenic Plants Program of China (2008ZX08004-003)the National High-Tech R&D Program (863Program, 2006AA100104)the National Natural Science Foundation of China (30000107)
文摘It is important to determine the isoflavone components by high-performance liquid chromatography (HPLC) for the molecular assistant selection of isoflavone in soybean. Based on the standard samples of 12 isoflavone components, the isoflavone components were analyzed using the determination of absorbance peaks method by HPLC. The results showed that there were different maximum ultraviolet (UV) absorbance for the aglycones of daidzein, glycitein, and genistein, which were at 250, 257, and 260 nm, respectively. A linear gradient elution of acetonitrile (13-30%) containing 0. 1% acetic acid as a mobile phase was applied on a YMC-C18 column at 35℃. The 12 isoflavone components were determined using the UV detector by HPLC. We concluded that this is a rapid and precise method which adapted to determine the large numbers of samples with microanalysis.
基金financially supported by the National Natural Science Foundation of China (30971801, 31271752, 30490250-1)the National Key Technologies R&D Program in the 12th Five-Year Plan (2012AA101106)+1 种基金the National Foundation for Transgenic Species (2009ZX08009-088B)the Agricultural Science and Technology Innovation Program
文摘Salt is an abiotic stress factor that strongly affects soybean growth and production. A single dominant gene has been shown to confer salt tolerance in the soybean cultivar Tiefeng 8.The objective of the present study was to genetically map the salt-tolerance gene in an F2:3population and a recombinant inbred line(RIL) population derived from a cross between two cultivated soybeans, Tiefeng 8(tolerant) and 85-140(sensitive). The F2:3families and RILs were treated with 200 mmol L-1Na Cl to evaluate salt tolerance. The F2:3population showed 1(42 tolerant): 2(132 segregating): 1(65 sensitive) segregation, indicating a single dominant gene for salt tolerance in Tiefeng 8. A sequence-characterized amplified region(SCAR) marker from a previously identified random amplified polymorphic DNA(RAPD)marker and four insertion/deletion polymorphism(In Del) markers were developed within the mapping region. Using these markers along with SSR markers, the salt-tolerance gene was mapped within 209 kb flanked by SCAR marker QS08064 and SSR marker Barcsoyssr_3_1301 on chromosome 3. Three markers that cosegregated with the salt tolerance gene and SCAR marker QS08064 were used to genotype 35 tolerant and 23 sensitive soybean accessions. These markers showed selection efficiencies of 76.2% to94.2%. The results indicate that these markers will be useful for marker-assisted breeding and facilitating map-based cloning of the salt tolerance gene in soybean.
基金supported by the National Natural Science Foundation of China(31101104,31271643)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20102103120011)
文摘Phosphorus (P) is an essential element for plant growth and yield. Improving phosphorus use efficiency of crops could potentially reduce the application of chemical fertilizer and alleviate environmental damage. Soybean (Glycine max (L.) Merr.) is sensitive to phosphorus (P) in the whole life history. Soybean cultivars with different P efficiencies were used to study P uptake and dry matter accumulation under different P levels. Under low P conditions, the P contents of leaf in high P efficiency cultivars were greater than those in low P efficiency cultivars at the branching stage. The P accumulation in stems of high P efficiency cultivars and in leaves of low P efficiency cultivars increased with increasing P concentration at the branching stage. At the late podding stage, the P accumulation of seeds in high and low P efficiency cultivars were 22.5 and 26.0%, respectively; and at the mature stage were 69.8 and 74.2%, respectively. In average, the P accumulation in whole plants and each organ was improved by 24.4% in high P efficiency cultivars compared to low P efficiency cultivars. The biomass between high and low P efficiency cultivars were the same under extended P condition, while a significant difference was observed at late pod filling stage. At the pod setting stage, the biomass of high P efficiency cultivars were significant greater (17.4%) than those of low P efficiency cultivars under high P condition. Meanwhile, under optimum growth conditions, there was little difference ofbiomass between the two types of cultivars, however, the P agronomic efficiency and P harvest index were significant higher in high P efficiency cultivars than those in low P efficiency cultivars.
基金supported by the National Key Research and Development Program of China (2016YFD0100201)the National Natural Science Foundation of China (31771819)+2 种基金the China Postdoctoral Science Foundation (2017M621990)the Introduced Leading Talent Research Team for Universities in Anhui Provincethe Natural Science Foundation of Anhui Province, China (1608085QC66)
文摘Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may provide a theoretical basis for improving seed yield. However, there are few reports related to QTL mapping of 100-SW across multiple ecological regions. In this study, 21 loci associated with seed size traits were identified using a genome-wide association of 5361 single nucleotide polymorphisms (SNPs) across three ecoregions in China, which could explain 8.12%–14.25% of the phenotypic variance respectively. A new locus, named as SW9-1 on chromosome 9 that explained 10.05%–10.93% of the seed weight variance was found significantly related to seed size traits, and was not previously reported. The selection effect analysis showed that SW9-1 locus has a relatively high phenotypic effect (13.67) on 100-SW, with a greater contribution by the accessions with bigger seeds (3.69) than the accessions with small seeds (1.66). Increases in seed weight were accompanied by increases in the frequency of SW9-1T allele, with >90% of the bred varieties with a 100-SW >30 g carrying SW9-1T. Analysis of SW9-1 allelic variation in additional soybean accessions showed that SW9-1T allele accounting for 13.83% of the wild accessions, while in 46.55% and 51.57% of the landraces and bred accessions, respectively, this results indicating that the SW9-1 locus has been subjected to artificial selection during the early stages of soybean breeding, especially the utilization of SW9-1T in edamame for big seed. These results suggest that SW9-1 is a novel and reliable locus associated with seed size traits, and might have an important implication for increasing soybean seed weight in molecular design breeding. Cloning this locus in future may provide new insights into the genetic mechanisms underlying soybean seed size traits.
基金supported in part by a grant from the International Atomic Energy Agency (CPR-12988)Na-tional 973 Program of China (2004CB117206)+4 种基金National863 Program of China (2006AA10Z1C1)National Natu-ral Science Foundation of China (30771362 and30471094)the 111 Project from the Ministry of Edu-cation of China (B08025)the Key Program of Science and Technology of Shanxi Province of China (051017)the Scientific Research Foundation for Youth Aca-demic Leaders from University in Shanxi Province of China (200425)
文摘Trichomes (plant hairs) are present on nearly all land plants and are known to play important roles in plant protection, specifically against insect herbivory, drought, and UV radiation. The identification of quantitative trait loci (QTL) associated with trichome density should help to interpret the molecular genetic mechanism of soybean trichome density. 184 recombinant inbred lines (RILs), derived from a cross between soybean cultivars Kefeng 1 and Nannong 1138-2 were used as segregating population for evaluation of TDU (trichome density on the upper surface of leaf blade) and TDD (trichome density on the downer surface of leaf blade). A total of 15 QTL were detected on molecular linkage groups (MLG) A2, Dla, Dlb, E and H by composite interval mapping (CIM) and among all the QTL, qtuA2-1, qtuD 1 a-1, qtuD lb-2, qtuH-2 qtuE-1, qtdDlb-2, and qtdH- 2 were affirmed by multiple interval mapping (MIM). The contribution ofphenotypic variance of qtuH-2 was 31.81 and 29.4% by CIM and MIM, respectively, suggesting it might be major gene Ps loci. Only 10 pairs of main QTL interactions for TDU were detected, explained a range of 0.2-5.1% of phenotypic variations for each pair for a total of 22.8%. The QTL on MLG Dlb affecting trichome density were mapped near to Rsc-7 conditioning resistance to SMV (soybean mosaic virus). This study showed that the genetic mechanism of trichome density was the mixed major gene and polygene inheritance, and also suggested that the causal nature between trichome density and other agronomic traits.
基金financially supported by the National Transgenic Major Program, China (2016ZX08004001-04)
文摘Glyphosate is a highly efficient, broad-spectrum nonspecific herbicide that inhibits the 5-enolpyruvylshikimate-3-phosphate synthase(EPSPS)-mediated pathway of shikimic acid. The screening of glyphosate-resistant EPSPS gene is a major means for the development of new genetically modified glyphosate-resistant transgenic crop. Currently, the main commercialized glyphosate-resistant soybean contains glyphosate-resistant gene CP4-EPSPS. In this study, a G10-EPSPS gene was reported providing glyphosate resistance in Zhongdou 32. Here, G10-EPSPS gene was introduced into soybeans through Agrobacterium-mediated soybean cotyledon node. PCR, Southern blotting, semi-quantitative RT-PCR, qRT-PCR, and Western blotting were used, and the results revealed that G10-EPSPS had been integrated into the soybean genome and could be expressed steadily at both mRNA and protein levels. In addition, glyphosate resistance analysis showed that the growth of transgenic soybean had not been affected by concentrations of 900 and 2 700 g a.e. ha–1 of glyphosate. All the results indicated that G10-EPSPS could provide high glyphosate resistance in soybeans and be applied in production of glyphosate-resistant soybean.
文摘Fifteen combinations with six soybean cultivars of different isoflavone content were formulated and planted in a randomized complete-block design model; genetic factors of isoflavone quantity were analyzed. Results indicated that genetic factors of isoflavone contents in F2 population inherited quantitatively. Isoflavone content of F1 F2 seeds normally trended. There were heterosis in F1, F2 of most combinations, and also heterobeltiosis in part of the crosses. The broad sense heritability of F2 was higher in parts of the crosses. It predicted the selection might be carried out preliminarily in F2 hybrids. There was significant positive correlation between hybrids and mid-parent.
基金supported by the National Key Technology R&D Program of China during the Twelfth Five-Year Plan Period of China (2014BAD11B01-x02)Beijing Science and Technology Project (Z16110000916005)+3 种基金National Science and Technology Major Project (2016ZX08004-003)National Key R&D Program of China (2016YFD0100504 and 2016YFD0100201)National Natural Science Foundation of China (31671716, 31171576)Agricultural Science and Technology Innovation Project of CAAS
文摘Soybean isoflavones are essential secondary metabolites synthesized in the phenylpropanoid pathway and benefit human health. In the present study, highresolution QTL mapping for isoflavone components was performed using specific-locus amplified fragment sequencing(SLAF-seq) with a recombinant inbred line(RIL) population(F5:7) derived from a cross between two cultivated soybean varieties, Luheidou 2(LHD2) and Nanhuizao(NHZ). Using a high-density genetic map comprising 3541 SLAF markers and the isoflavone contents of soybean seeds in the 200 lines in four environments, 24 stable QTL were identified for isoflavone components, explaining 4.2%–21.2% of phenotypic variation.Of these QTL, four novel stable QTL(qG8, qMD19, qMG18, and qTIF19) were identified for genistin, malonyldaidzin, malonylgenistin, and total isoflavones, respectively. Gene annotation revealed three genes involved in isoflavone biosynthesis(Gm4CL, GmIFR, and GmCHR) and 13 MYB-like genes within genomic regions corresponding to stable QTL intervals, suggesting candidate genes underlying these loci. Nine epistatic QTL were identified for isoflavone components, explaining 4.7%–15.6% of phenotypic variation. These results will facilitate understanding the genetic basis of isoflavone accumulation in soybean seeds. The stable QTL and tightly linked SLAF markers may be used for markerassisted selection in soybean breeding programs.
基金supported by the Major Science and Technology Projects of China (2014ZX08004-003,2014ZX08010-004)the Natural Science Foundation of China (31471571)+2 种基金the earmarked fund for China Agriculture Research System (CARS-04)the Agricultural Science and Technology Innovation Project of CAASIsrael Science Foundation (ISF grant 231-09)
文摘Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Al- though the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low con- centration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione y-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.
基金The project was supported by the National Natural Science Foundation of China (30490250)the National Key Basic Research Program (2002CB 111304, 2004CB7206)+1 种基金the National 863 Program (2002AA211052)the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT).
文摘Soybean cyst nematode (SCN Heterodera glycines Ichinohe) is one of the most important nationwide soybean diseases in China. A total of 38 soil specimens or locations in the area was sampled and tested for SCN races during 2001-2003 for the inspection of race distribution in Huang-Huai Valleys. A map of race distribution was constructed according to the data from both the present study and the published reports cited. Three areas, namely, the area of southeast to Jinan in Shangdong Province; the area of northern Henan Province and its border region to south of Hebei Province; and the area of Luohe, Zhoukou of Henan Province and Fuyang of Anhui Province mainly infested with Race 1 were identified. Race 4 was predominant in Shanxi Province, Beijing and the adjacent area of Henan, Shandong, and Anhui provinces, and the delta of Huanghe River in Shandong Province. Race 2 was mainly found in Liaocheng, Dezhou of Shangdong Province and Shijiazhuang of Hebei Province, and Jiaozuo and Huojia of Henan Province. Race 7 was distributed in the west part of Jiaodong Peninsula of Shandong Province and Kaifeng, Huaxian, Wenxian of Henan Province. Race 5 was found and scattered in Hebei and Henan Province. Race 9 was found in Shangqiu of Henan Province, which was reported for the first time in China. It can be seen that Race 1 and Race 4 were the two predominant races in Huang-Huai Valleys, and that research should focus on developing resistant cultivars of these races. There might exist other races in an area with some predominant races. The race substitution in the past decade was not obviously found, therefore, the results should be meaningful to future breeding for resistance to SCN in Huang-Huai Valleys.
文摘Understanding the changes in agronomic and physiological traits associated with yield genetic gain is important for soybean production and future breeding strategy. The objective of this study was to compare the older and modern cultivars to learn whether the yield improvements depend on preplant fertilizer or the plant productivity improvement, A set of older cultivars, with their modern counterparts derived from breeding programs in Liaoning and Ohio were evaluated for their agronomic and physiological traits under different fertilizer levels from 2004 to 2006. There was no improvement of response to N and P preplant fertilizer for genotypes. After more than 70 yr breeding, soybean breeders made some improvements in agronomic and physiological traits that contribute to yield increase. When compared to older cultivar, modern Liaoning and Ohio cultivars were shorter and more resistance to lodging, had greater leaf density, higher harvest index, more leaf area per plant, and greater photosynthetic rate, transpiration rate and stomatal conductance at the beginning of seed development. Ohio cultivars were more resistant to lodging as if selected for easy harvest by combine, even under high N and P preplant fertilizer level, which resulted in Ohio cultivars with higher and stable yield productivity.
基金supported by the National Natural Science Fundation of China (30971809)
文摘Phytophthora root rot is one of the most prevalent diseases in the world,which can infect the seedlings and plants,with substantial negative impact on soybean yield and quality.MicroRNAs (miRNAs) are a class of post-transcriptional regulators of gene expression during growth and development of organisms.A soybean disease-resistance variety Suinong 10 was inoculated with Phytophthora sojae race No.1,and the specific miRNA resistant expression profile was acquired by microarray for the first time.Different expressional miRNAs have been found after comparing the results of the treated sample with the control sample.Furthermore,the target genes of different expressional miRNAs were predicted.Two miRNAs,cbr-mir-241 and ath-miR854a,regulated the disease-resistance process directly through their targets,some enzymes.Another two miRNAs,gma-miR169a and ath-miR169h,participated in disease-resistance regulation as transcription factors.Similarly,one miRNA,ptc-miR164f,has been reported to regulate the plant development.All of these studies would be served as the foundation for exploring the resistance mechanism.
基金This work was jointly spored by the grants from the Natural Science Foundation of Henan Province(0511030500)the National 863 Program of China(2004AA2111112)the N ational Natural Science Foundation of China(30490250).
文摘The genetic analysis of soybean isoflavone content and its components were carried out based on the NC Ⅱ matingdesign in eight soybean varieties. The results showed that the isoflavone contents and its components of soybean seedare quite differences among the tested materials, the contents of isoflavone and daidzein are controlled not only byadditive effects and but also by non-additive effects, while the content of genistin is dominated by non-additive effects,and genistein, glycitin and daidzin are mainly controlled by additive effects. There are significant differences in thecontents of isoflavone and its components among the combinations derived from different parents. Results also indicatedthat the tested traits are negatively heterosis except for the contens of daidzein and daidzin are positively heterosis basedon the data of the GCA and SCA in average heterosis values. In this research we have a suggestion that soybean varietywith high isoflavone should be used as one of the parents in the breeding program, and it is the best choice that thecombinations crossed between two high isoflavone varieties or a high variety and a low one.
文摘The soybean cultivar Yudou25 was sown at 5 locations of Henan Province on 13 differentdates in 2001 and 2002. The data of isoflavone contents for the 109 samples of soybeanseed and 33 eco-physiological factors including meteorological factors, soil nutritionand altitudes were received and used for statistical analysis. The step-wise regressionwas used to screen the correlated factors, which significantly effected isoflavonecontents. Results showed that 9 eco-physiological factors were highly correlated withisoflavones. Low mean temperature, high diurnal temperature range at seed filling andmaturity, more sunlight hours and low mean temperature at emergence were favorable toisoflavone accumulation. The rainfall at emergence showed a nonlinear relationship withisoflavone content and its optimum value was 75 mm for isoflavone formation. Low diurnaltemperature range at branching, high organic matter and low sulfur content in soil weresuitable for the formation of isoflavones. The isoflavone contents would not be affectedby other eco-physiological factors in this study.
文摘Soybean seed products contain isoflavones (genistein, daidzein, and glycitein) that display biological effects when ingested by humans and animals. These effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key factor to the biological effect. Our objective was to identify the genetic effects that underlie the isoflavone content in soybean seeds. A genetic model for quantitative traits of seeds in diploid plants was applied to estimate the genetic main effects and genotype x environment (GE) interaction effects for the isoflavone content (IC) of soybean seeds by using two years experimental data with an incomplete diallel mating design of six parents. Results showed that the IC of soybean seeds was simultaneously controlled by the genetic effects of maternal, embryo, and cytoplasm, of which maternal genetic effects were most important, followed by embryo and cytoplasmic genetic effects. The main effects of different genetic systems on IC trait were more important than environment interaction effects. The strong dominance effects on isoflavone from residual was made easily by environment conditions. Therefore, the improvement of the IC of soybean seeds would be more efficient when selection is based on maternal plants than that on the single seed. Maternal heritability (65.73%) was most important for IC, followed by embryo heritability (25.87%) and cytoplasmic heritability (8.39%). Based on predicated genetic effects, Yudou 29 and Zheng 90007 were better than other parents for increasing IC in the progeny and improving the quality of soybean, The significant effects of maternal and embryo dominance effects in variance show that the embryo heterosis and maternal heterosis are existent and uninfluenced by environment interaction effects.
基金Project (No. Z304104) supported by Natural Science Foundation of Zhejiang Province, China
文摘The effects of salinity (50 mmol/L NaCI) and Cd (1 μmol/L CdCl2) as sole and combined on growth and photosynthetic parameters were studied using two soybean genotypes, Huachun 18 and NGB. The concentrations of Cd^2+, Zn^2+, Ca^2+, Mg^2+, K^+ and Na^+were also determined in seeds and pods. Huachun 18 suffered a more serious decrease than NGB in net photosynthetic rate (P,) in the treatments of salinity stress alone and combined stress (NaCl+Cd), showing that it is relatively sensitive to salinity. The decrease in P, caused by salt stress in Huachun 18 was mainly due to the reduced total chlorophyll content and photosynthetic efficiency (the ratio of variable fluorescence to maximal fluorescence, Fv/Fm), whereas the decease in NGB was mainly related to reduced stomatal conductance (Gs), The combined stress of both Na and Cd did not induce further decrease in photosynthesis and fluorescence in the two genotypes relative to salt or Cd stress alone. Greater change in the pod concentrations of Zn^2+, Ca^2+, Mg^2+, K^+ and Na^+was detected under salt stress for Huachun 18 than for NGB. The results suggested that the interactive effect of NaCl-Cd on growth and nutrient uptake differs between the two soybean genotypes.