Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeas...Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeast China. The tolerance of soybean to sclerotium is partial resistance(quantitative trait), which is controlled by multiple genes. Mapping QTL and identifying candidate genes underlying soybean tolerance to SWM can accelerate the process of breeding for disease-resistant varieties. In the present study, a total of 128 lines derived from the susceptible soybean cultivar Hefeng25 and the disease tolerant soybean cultivar Maple Arrow were evaluated by in vitro and in vivo inoculation methods. A total of 78 SSR markers were used to construct linkage groups(D1 a(Chr.01), A2(Chr.08), B1(Chr.11) and F(Chr.13)) which intensively distributed SWM resistance related QTLs. Five QTLs were detected through combining two sets of phenotypic data with the composite interval mapping(CIM) method. A total of seven candidate genes located in the five QTLs were induced by Sclerotinia sclerotiorum. The SSR markers and candidate genes associated with tolerance to Sclerotinia sclerotiorum could be helpful for SWM resistance breeding in soybean.展开更多
以世界公认的菌核病抗性品种Maple Arrow以及感病品种合丰25为材料,在大豆V1期进行活体接种,比较不同抗感材料在接种核盘菌后的72h内6个时间点的菌丝扩展速度和4种生化酶活性,旨在明确MapleArrow抗菌核病的生化机制,为抗病育种提供依据...以世界公认的菌核病抗性品种Maple Arrow以及感病品种合丰25为材料,在大豆V1期进行活体接种,比较不同抗感材料在接种核盘菌后的72h内6个时间点的菌丝扩展速度和4种生化酶活性,旨在明确MapleArrow抗菌核病的生化机制,为抗病育种提供依据.扫描电镜结果表明,抗感品种在侵染后0~72h对病原菌的抗性差异明显,接种前期病原菌在Maple Arrow叶片上的扩展速度明显低于合丰25.接种后期,Maple Arrow叶片病健交界明显,菌丝体周围寄主组织结构保持相对完整;合丰25叶片布满菌丝体,叶片结构崩溃.动态生化指标测定结果表明抗感品种在过氧化物酶(POD)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)和苯丙氨酸解氨酶(PAL)活性均不同程度的高于对照组.接种后24h Maple Arrow的PPO活性显著高于感病品种;接种后48h Maple Arrow的POD和PAL的活性增加幅度显著高于合丰25.由此得出结论,抗病品种Maple Arrow的保护酶系统对核盘菌侵染的响应比感病品种合丰25更为活跃,四种保护酶中的PPO、POD和PAL是两种抗性差异的关键因子,其中PPO主要作用于感染前期,POD和PAL主要作用于后期.展开更多
基金Supported by the Youth Innovation Talent Project of the General Undergraduate Universities in Heilongjiang Province(UNPYSCT-2016145)
文摘Soybean white mold(SWM) caused by Sclerotinia sclerotiorum is a serious disease of soybean and other plant, which is mainly distributed in the soybean producing areas of north China, east China, southwest and northeast China. The tolerance of soybean to sclerotium is partial resistance(quantitative trait), which is controlled by multiple genes. Mapping QTL and identifying candidate genes underlying soybean tolerance to SWM can accelerate the process of breeding for disease-resistant varieties. In the present study, a total of 128 lines derived from the susceptible soybean cultivar Hefeng25 and the disease tolerant soybean cultivar Maple Arrow were evaluated by in vitro and in vivo inoculation methods. A total of 78 SSR markers were used to construct linkage groups(D1 a(Chr.01), A2(Chr.08), B1(Chr.11) and F(Chr.13)) which intensively distributed SWM resistance related QTLs. Five QTLs were detected through combining two sets of phenotypic data with the composite interval mapping(CIM) method. A total of seven candidate genes located in the five QTLs were induced by Sclerotinia sclerotiorum. The SSR markers and candidate genes associated with tolerance to Sclerotinia sclerotiorum could be helpful for SWM resistance breeding in soybean.
文摘以世界公认的菌核病抗性品种Maple Arrow以及感病品种合丰25为材料,在大豆V1期进行活体接种,比较不同抗感材料在接种核盘菌后的72h内6个时间点的菌丝扩展速度和4种生化酶活性,旨在明确MapleArrow抗菌核病的生化机制,为抗病育种提供依据.扫描电镜结果表明,抗感品种在侵染后0~72h对病原菌的抗性差异明显,接种前期病原菌在Maple Arrow叶片上的扩展速度明显低于合丰25.接种后期,Maple Arrow叶片病健交界明显,菌丝体周围寄主组织结构保持相对完整;合丰25叶片布满菌丝体,叶片结构崩溃.动态生化指标测定结果表明抗感品种在过氧化物酶(POD)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)和苯丙氨酸解氨酶(PAL)活性均不同程度的高于对照组.接种后24h Maple Arrow的PPO活性显著高于感病品种;接种后48h Maple Arrow的POD和PAL的活性增加幅度显著高于合丰25.由此得出结论,抗病品种Maple Arrow的保护酶系统对核盘菌侵染的响应比感病品种合丰25更为活跃,四种保护酶中的PPO、POD和PAL是两种抗性差异的关键因子,其中PPO主要作用于感染前期,POD和PAL主要作用于后期.